

BGB-3111-218: Single-Arm, Open-Label, Multicenter Study of the Bruton Tyrosine Kinase Inhibitor Zanubrutinib Monotherapy in Patients with CD79B-Mutated Relapsed/Refractory Diffuse Large B-Cell Lymphoma

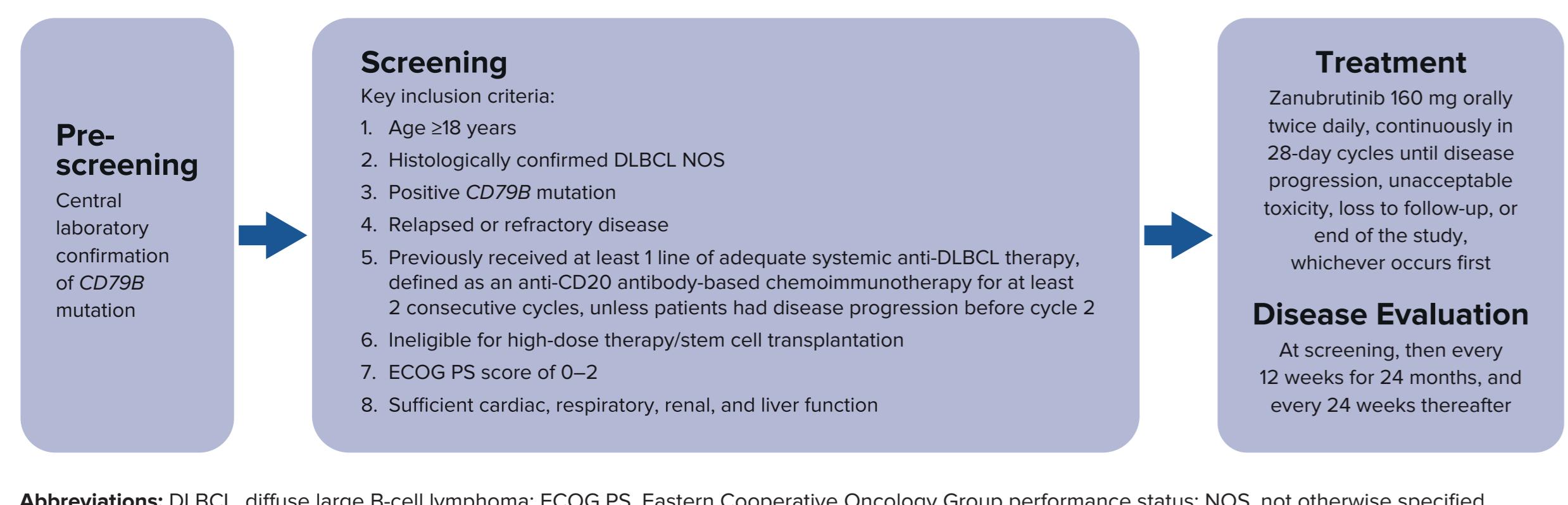
Li Wang,¹ Fei Li,² Qingyuan Zhang,³ Hui Zhou,⁴ Ou Bai,⁵ Liping Su,⁶ Chunhong Hu,⁷ Zhi-ming Li,⁸ Kaiyang Ding,⁹ Qunyi Guo,¹⁰ Xiaoling Li,¹¹ Xiaoxi Zhou,¹² Wenjuan Yu,¹³ Shuhua Yi,^{14,15} Zhixia Wei,¹⁶ Wenbin Qian,¹⁷ Feiheng Chen,¹⁸ Guohui Cui,¹⁹ Zhiyu Liang,²⁰ Qingchao Zeng,²⁰ Jiaoyan Lyu,²¹ Yang Liu,²⁰ Pan Zhang,²¹ Zhirong Shen,²⁰ Zaixing Shi,²⁰ Jing Rong,²¹ Keshu Zhou,²² Weili Zhao¹

¹Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; ²The First Affiliated Hospital of Nanchang University, Nanchang, China; ³Harbin Medical University Cancer Hospital, Harbin, China; ⁴Hunan Cancer Hospital, Changsha, China; ⁵The First Hospital of Jilin University, Changchun, China; ⁶Shanxi Provincial Cancer Hospital, Taiyuan, China; ⁷The Second Xiangya Hospital of Central South University, Changsha, China; ⁸State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangdong, China; ⁹Anhui Provincial Cancer Hospital, Hefei, China; ¹⁰Taizhou Hospital of Zhejiang Province, Taizhou, China; ¹¹Liaoning Cancer Hospital and Institute, Shenyang, China; ¹²Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ¹³The First Affiliated Hospital of Zhejiang University, Hangzhou, China; ¹⁴State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haile Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; ¹⁵Tianjin Institutes of Health Science, Tianjin, China; ¹⁶Hainan Cancer Hospital, Haikou, China; ¹⁷Zhejiang University College of Medicine-Second Affiliated Hospital, Hangzhou, China; ¹⁸The First Affiliated Hospital of Shantou University Medical College, Shantou, China; ¹⁹Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ²⁰BeOne Medicines Ltd, Shanghai, China; ²¹BeOne Medicines Ltd, Beijing, China; ²²HeNan Cancer Hospital, Zhengzhou, China

CONCLUSIONS

- Zanubrutinib monotherapy demonstrated encouraging antitumor activity and a tolerable safety profile in pretreated CD79B-mutated R/R DLBCL, providing clinical benefit for these patients who have limited therapeutic options
- Retrospective biomarker analyses demonstrated improved zanubrutinib response in patients with the non-GCB subtype, low baseline ctDNA levels, or co-occurring CD79B and MYD88 L265P mutations
- Emerging therapeutic strategies targeting the B-cell receptor signaling pathway in DLBCL warrant further investigation, including BTK protein degraders, combination treatment regimens involving zanubrutinib, and treatment options guided by genetic subtypes

INTRODUCTION


- Zanubrutinib, a potent, highly selective, next-generation Bruton tyrosine kinase (BTK) inhibitor with a favorable safety profile, is approved in over 70 countries for the treatment of at least one B cell malignancy
- Patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) face a poor prognosis, and the CD79B mutation is an unfavorable prognostic factor for survival. There is no established standard of care for CD79B-mutated R/R DLBCL, highlighting an unmet clinical need
- Zanubrutinib has demonstrated modest antitumor activity in R/R non-germinal center B-cell-like (GCB) DLBCL in clinical trials, and retrospective biomarker analyses have indicated that patients with mutations in CD79B show an enhanced response to zanubrutinib treatment.^{1,2}
- BGB-3111-218 (NCT05068440) is a phase 2, single-arm study assessing the antitumor activity and related biomarkers of zanubrutinib monotherapy for CD79B-mutated R/R DLBCL
- We present the final analysis of the BGB-3111-218 study

METHODS

Study Design

- The study design for BGB-3111-218 is shown in Figure 1

Figure 1. Study Design

Abbreviations: DLBCL, diffuse large B-cell lymphoma; ECOG PS, Eastern Cooperative Oncology Group performance status; NOS, not otherwise specified.

Endpoints

- The primary endpoint was investigator-assessed overall response rate (ORR) per the 2014 Lugano criteria³
- Secondary endpoints were complete response (CR) rate, duration of response (DoR), time to response (TTR), progression-free survival (PFS), overall survival (OS), and safety per the National Cancer Institute's Common Terminology Criteria for Adverse Events version 5.0
- Exploratory endpoints included pharmacokinetic evaluations, corresponding relationships between response and clinical or genetic risk factors, as well as potential resistance biomarkers and mechanisms

Biomarker Analyses

- Comprehensive biomarker data analyses were performed to explore correlations with clinical efficacy
- Immunohistochemistry (IHC) DLBCL subtyping data were collected from local sites. For patients without local IHC data, central laboratory staining of CD10, BCL-6, and MUM1 with formalin-fixed paraffin-embedded (FFPE) tissue specimens was used to classify phenotypes using the Hans algorithm⁴
- Molecular profiling was conducted in patients with evaluable biomarkers using DNA (custom Oncolym-413 panel [Gene+]) and RNA sequencing data

RESULTS

Patients

- Between August 11, 2021, and March 31, 2025, 65 of 521 pre-screened patients were enrolled across 20 sites in China and included in the efficacy and safety analyses
- At data cutoff (March 31, 2025), the median study follow-up time was 13.9 months (range: 0.5–36.4 months)
- Baseline characteristics of the 65 enrolled patients were representative of a typical patient population with R/R DLBCL (Table 1)

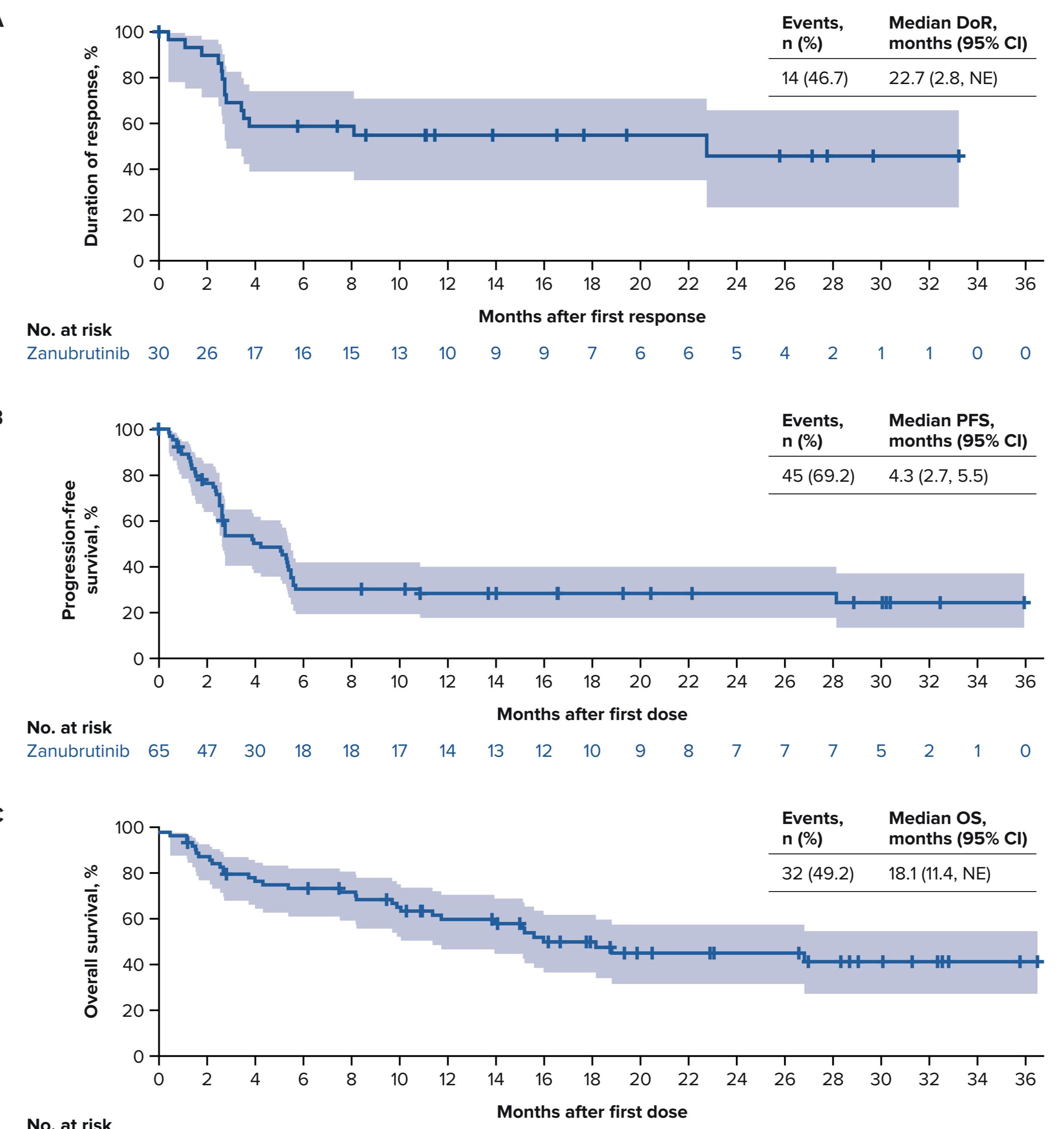
Table 1. Baseline Patient Demographics and Disease Characteristics

Characteristic	Patients (N=65)	Characteristic	Patients (N=65)
Median (range) age, years	66 (42–92)	Stage at study entry, n (%)	
Sex, n (%)		Stage I	2 (3.1)
Male	34 (52.3)	Stage II	6 (9.2)
Female	31 (47.7)	Stage II bulky	3 (4.6)
ECOG performance status, n (%)		Stage III	11 (16.9)
0	12 (18.5)	Stage IV	42 (64.6)
1	43 (66.2)	Missing	1 (1.5)
2	10 (15.4)	DLBCL IHC subtype, n (%)	
Disease status at study entry, n (%)		GCB	7 (10.8)
Relapsed	41 (63.1)	Non-GCB	56 (86.2)
Refractory	24 (36.9)	COO unknown	2 (3.1)
Baseline bone marrow involvement (aspirate), n (%)		CD79B mutant status (central laboratory), n (%)	
Yes	3 (4.6)	Positive	65 (100.0)
No	57 (87.7)	Negative	0
N/A	1 (1.5)	Median number (range) of prior lines	1 (1–6)
Missing	4 (6.2)		

Abbreviations: COO, cell of origin; DLBCL, diffuse large B-cell lymphoma; ECOG, Eastern Cooperative Oncology Group; GCB, germinal center B-cell-like; IHC, immunohistochemistry; N/A, not applicable.

Efficacy

- Zanubrutinib demonstrated antitumor activity in patients with CD79B-mutated R/R DLBCL. The investigator-assessed ORR was 46.2% (30/65 patients; 95% confidence interval [CI]: 33.7, 59.0, including 19 (29.2%) CRs and 11 (16.9%) partial responses (Table 2)
- Patients with non-GCB DLBCL demonstrated a favorable clinical response to zanubrutinib monotherapy (ORR, 51.8% [29/56 patients]; 95% CI: 38.0, 65.3). No responses were observed in the seven patients with GCB DLBCL
- The median DoR was 22.7 months (95% CI: 2.8, not estimable) for the patients who had responses (Figure 2A); the median TTR was 2.8 months; and the median PFS and OS were 4.3 months (95% CI: 2.7, 5.5) and 18.1 months (95% CI: 11.4, not estimable), respectively (Figure 2B and Figure 2C)


Table 2. Overall Response

Response category	Patients (N=65)
Overall response rate (CR or PR), n (%)	30 (46.2)
95% CI (%) ^a	33.7, 59.0
One-sided P value ^b	.0044
Best overall response, n (%)	
CR	19 (29.2)
PR	11 (16.9)
SD	8 (12.3)
PD	22 (33.8)
Discontinued before first response assessment	5 (7.7)

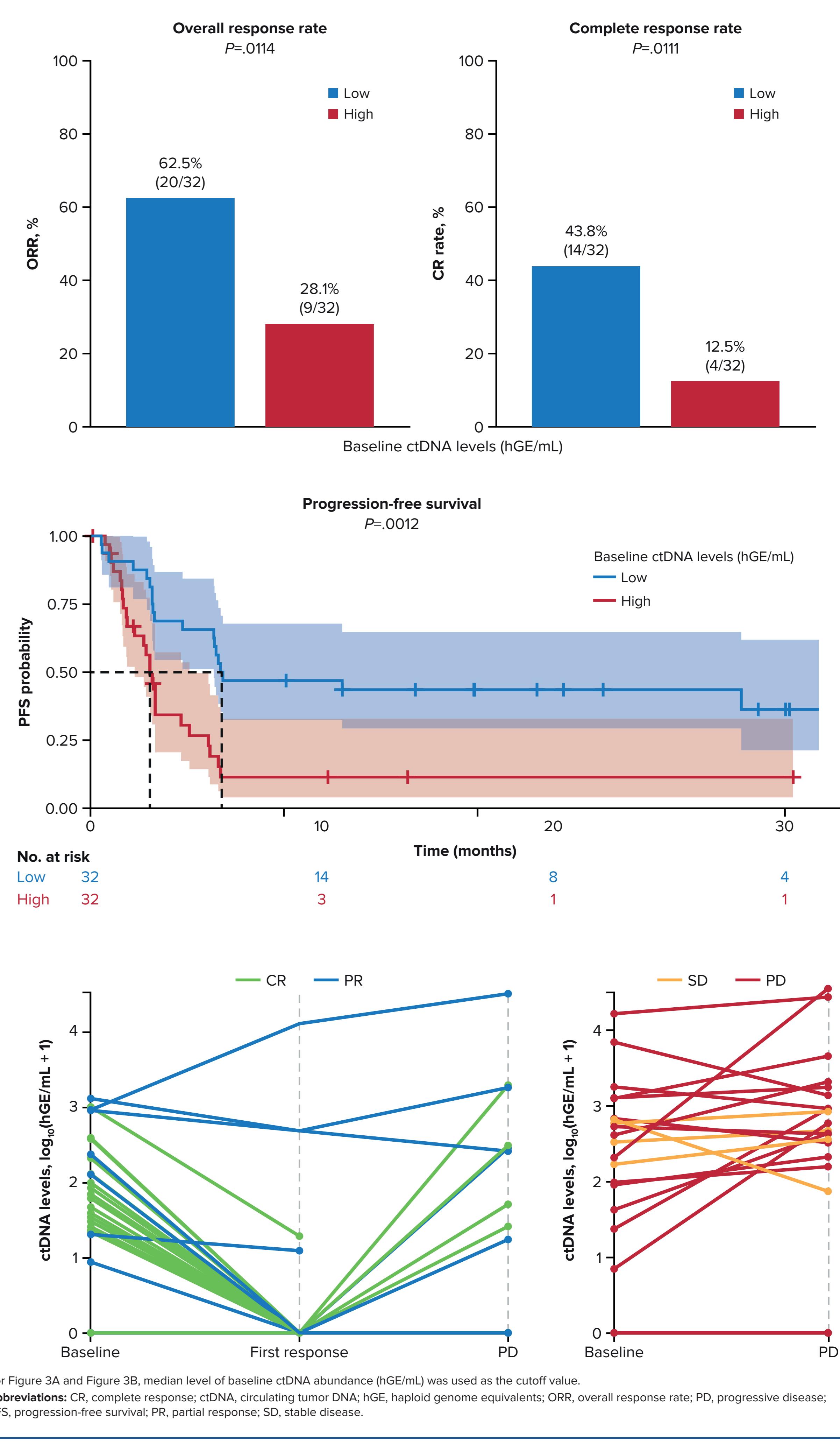
^a95% CI was estimated using the Clopper-Pearson method.
^bP value was calculated from the binomial exact test of zanubrutinib versus historical rate of 0.3.

Abbreviations: CI, confidence interval; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.

Figure 2. Kaplan–Meier Plots for (A) DoR, (B) PFS, and (C) OS by Investigator Assessment in Zanubrutinib-Treated Patients

Abbreviations: CI, confidence interval; DoR, duration of response; NE, not estimable; OS, overall survival; PFS, progression-free survival.

Safety


- The incidence of any treatment-emergent adverse event (TEAE) reported during the study was 90.8% (59/65 patients). TEAEs of grade ≥3 were reported in 28 (43.1%) patients, and any-grade serious TEAEs were reported in 16 (24.6%) patients
- The most frequently reported TEAEs of grade ≥3 included pneumonia (9.2%), neutrophil count decreased (7.7%), platelet count decreased (6.2%), and lymphocyte count decreased (6.2%)
- The incidence of treatment-related TEAEs (TRAEs) was 73.8% (48/65 patients), with grade ≥3 TRAEs reported in 16 (24.6%) patients and any-grade serious TRAEs reported in 6 (9.2%) patients

Circulating Tumor DNA and Mutations

- Using the median baseline circulating tumor DNA (ctDNA) level as a cutoff, patients with low ctDNA levels exhibited a better ORR (62.5% vs 28.1%; P=.014) and a higher CR rate (43.8% vs 12.5%; P=.011) versus patients with high ctDNA levels (Figure 3A)
- The 32 patients with low ctDNA levels had better PFS versus those with high ctDNA levels (32 patients; P=.0012; Figure 3B)
- When ctDNA levels were measured at first response, patients with a CR had a higher rate of undetectable ctDNA (94.4% [17/18 patients]); the rate of undetectable ctDNA in those with a PR was 37.5% (3/8) (Figure 3C)
- Consistent with previous studies, the most frequently mutated genes included: *PIM1* (51.6% of patients), *MYD88* (42.2%), *ETV6* (31.3%), *PCLO* (26.6%), *BTG1* (25.0%), and *TP53* (25.0%) (Supplemental Figure 1A)
- Patients with co-existing mutations in *CD79B* and *MYD88^{265P}* demonstrated an improved ORR (60.9% [14/23 patients] vs 36.6% [5/14]; P=.0726) and a higher CR rate (43.5% [10/23 patients] vs 19.5% [8/41]; P=.049) versus those without *MYD88^{265P}* (Supplemental Figure 1B)
- High expression of genes related to G1–S-phase cell-cycle transition, and DNA synthesis and repair, correlated with improved PFS (Supplemental Figures 1C and 1D)

Figure 3. Low ctDNA Levels at Baseline and at First Response Correlated with Antitumor Activity with Zanubrutinib Monotherapy.

(A) ORR and CR rate according to baseline ctDNA levels (hGE/mL). (B) Correlation between baseline ctDNA levels and PFS. (C) The dynamic change in ctDNA levels at baseline, first response, and disease progression in responders (left) and non-responders (right).

For Figure 3A and Figure 3B, median level of baseline ctDNA abundance (hGE/mL) was used as the cutoff value.

Abbreviations: CR, complete response; ctDNA, circulating tumor DNA; hGE, haploid genome equivalents; ORR, overall response rate; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease.

Supplemental Figure 1

Supplemental Figure 1