

Recent advances in relapsed/refractory CLL

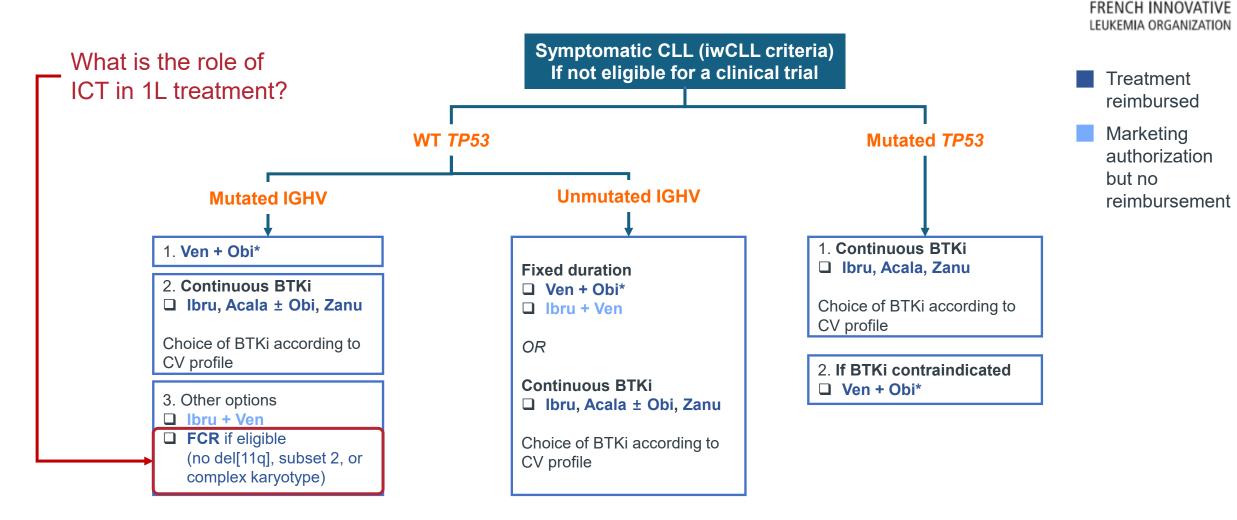
Professor Vincent Lévy

Clinical Research Department, Avicenne Hospital APHP, Bobigny INSERM UMR U1153, CRESS, ECSTRRA team, Hôpital Saint Louis, Paris, France

CLL, chronic lymphocytic leukemia. February 2024 | 0124--MRC-083

Disclosures

 Honoraria, advisory boards, and travel support: AbbVie, AstraZeneca, BeiGene, CSL Behring, and Janssen


Selecting treatment for patients with R/R CLL

- Looking at the treatment of patients with R/R disease means looking at the profile of these
 patients and how they evolve
 - \circ Older
 - More severe molecular and cytogenetic characteristics
 - Greater heterogeneity than in 1L, even if only because of the treatments used
- In 2024, what types of treatment do patients receive when they relapse?
 - Currently, there are no clear epidemiological data but there are treatment recommendations (US/Europe)^{1–4}

¹L, first-line; CLL, chronic lymphocytic leukemia; R/R, relapsed/refractory.

^{1.} NCCN Guidelines. Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma - Version 1.2024. 2. Eichhorst B *et al. Ann Oncol* 2021; 32 (1): 23–33. 3. FILO-CLL recommendations. Available at: https://www.filo-leukemia.org/content/filo-cll/recommandations-llc. Accessed February 2024. 4. Chronic lymphocytic leukemia (CLL) [in German]. Available at: https://www.onkopedia.com/de/onkopedia/guidelines/chronische-lymphatische-leukaemie-cll. Accessed February 2024.

FILO-CLL guidelines: Algorithm for 1L CLL

*Marketing authorization in France if ineligible for FCR and contraindicated for BTKi.

1L, first-line; Acala, acalabrutinib; BTKi, BTK inhibitor; CLL, chronic lymphocytic leukemia; CV, cardiovascular; del, deletion; FCR, fludarabine, cyclophosphamide, and rituximab; lbru, ibrutinib; ICT, immunochemotherapy; iwCLL, International Workshop on Chronic Lymphocytic Leukemia; Obi, obinutuzumab; Ven, venetoclax; WT, wild-type; Zanu, zanubrutinib.

FILO-CLL recommendations. Available at: https://www.filo-leukemia.org/content/filo-cll/recommandations-llc. Accessed January 2024.

Assessments to make at the time of relapse and before treatment

Standard karyotype / FISH panel ¹	<i>TP53</i> mutational status if previously WT ¹	Resistance mutations to targeted therapies ²
IGHV mutational status ¹	Vaccination status: Influenza ¹ , COVID-19 ³ , pneumococcal ¹ , herpes zoster ⁴	Possible Richter's transformation ¹

FISH, fluorescence *in situ* hybridization; WT, wild-type.

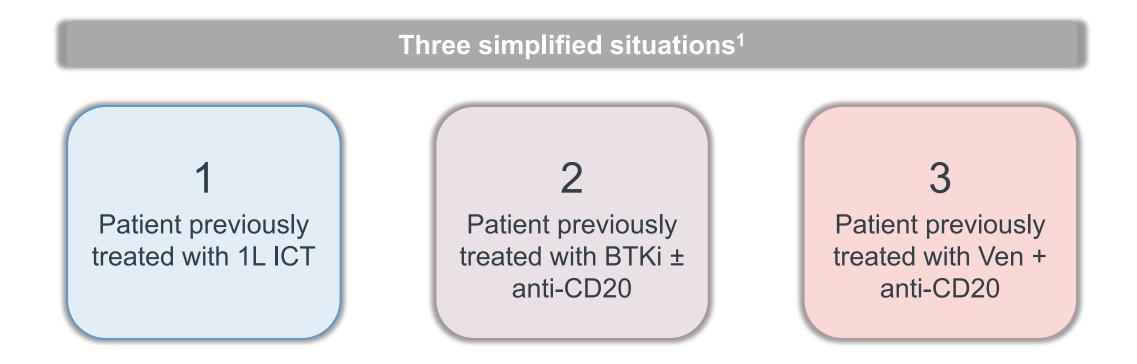
1. Eichhorst B et al. Ann Oncol 2021; 32 (1): 23–33. 2. Moreno C. Hematology Am Soc Hematol Educ Program 2020; 2020 (1): 33–40. 3. Shadman M et al. Hemasphere 2022; 7 (1): e811.

4. Muchtar E et al. Am J Hematol 2022; 97 (1): 90–98.

CLL relapse or Richter's transformation?

- Richter's transformation should be considered in patients with CLL who present with rapidly progressive disease
- Different prognosis and treatment
 - Patients with Richter's transformation have a dismal prognosis
- A tissue biopsy of the suspected site of transformation is required to confirm Richter's transformation
 - Selected based on markedly increased SUV on ¹⁸FDG PET/CT scan

Differentiating between Richter's transformation and R/R CLL

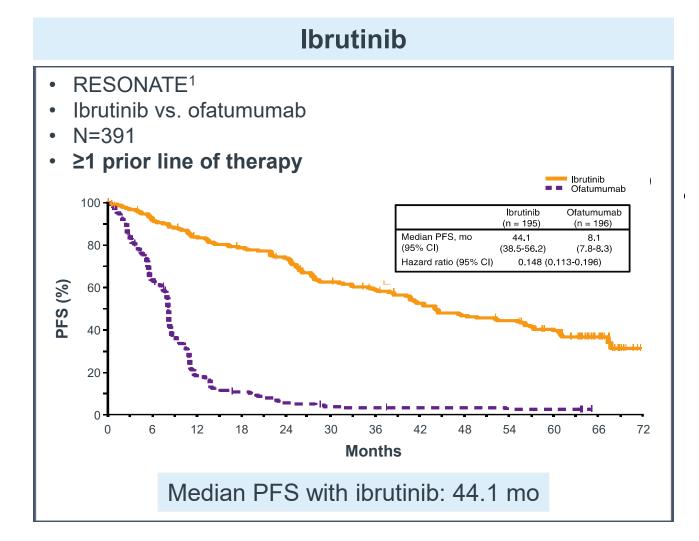


More symptomatic CLL with greater morbidity
 Elevated LDH
 Asymmetric, rapid increase of lymph nodes
 Hypercalcemia

CLL, chronic lymphocytic leukemia; CT, computed tomography; FDG, fluorodeoxyglucose; LDH, lactate dehydrogenase; PET, positron emission tomography; R/R, relapsed/refractory; SUV, standardized uptake value. Odetola O et al. Curr Hematol Malig Rep 2023; 18 (5): 130–143.

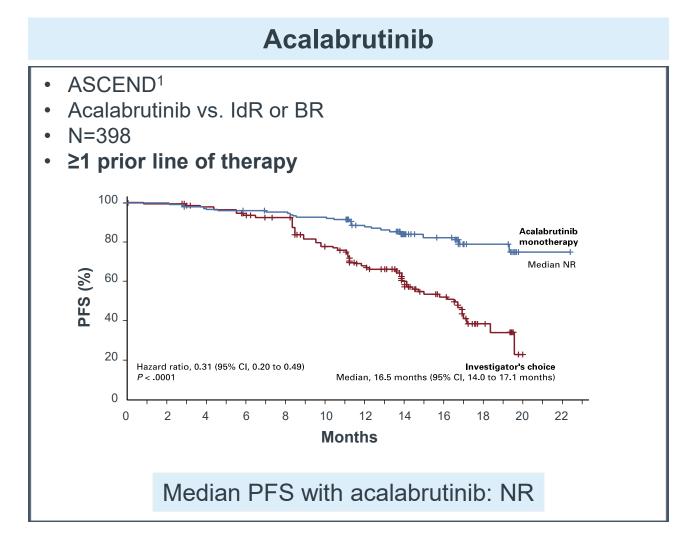
Confirmed R/R CLL

• Assess the need for treatment using the iwCLL 2018 criteria^{1,2}

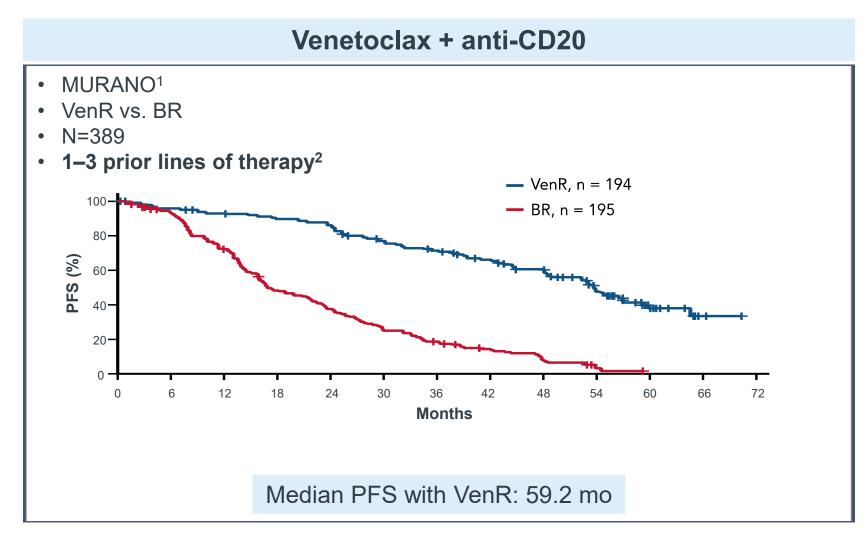

1L, first-line; BTKi, BTK inhibitor; CD, cluster of differentiation; CLL, chronic lymphocytic leukemia; ICT, immunochemotherapy; iwCLL, International Workshop on Chronic Lymphocytic Leukemia; R/R, relapsed/refractory; Ven, venetoclax.

1. Odetola O et al. Curr Hematol Malig Rep 2023; 18 (5): 130–143. 2. Hallek M et al. Blood 2018; 131 (25): 2745–2760.

Trials in R/R CLL

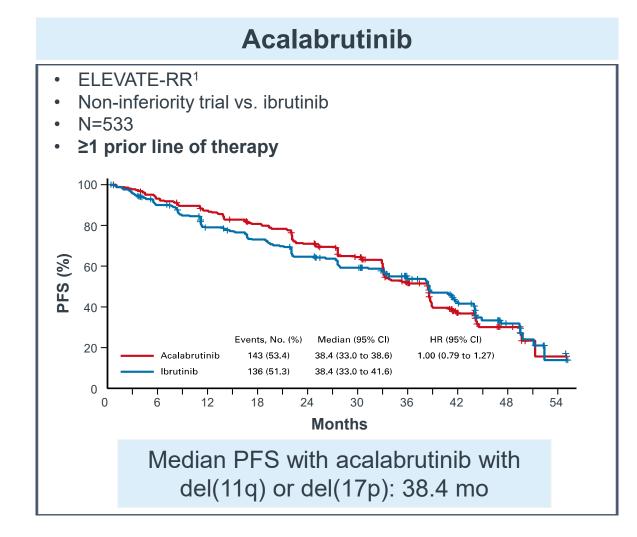

CLL, chronic lymphocytic leukemia; R/R, relapsed/refractory.

Trial data: BTKi monotherapy vs. historic SoC therapies

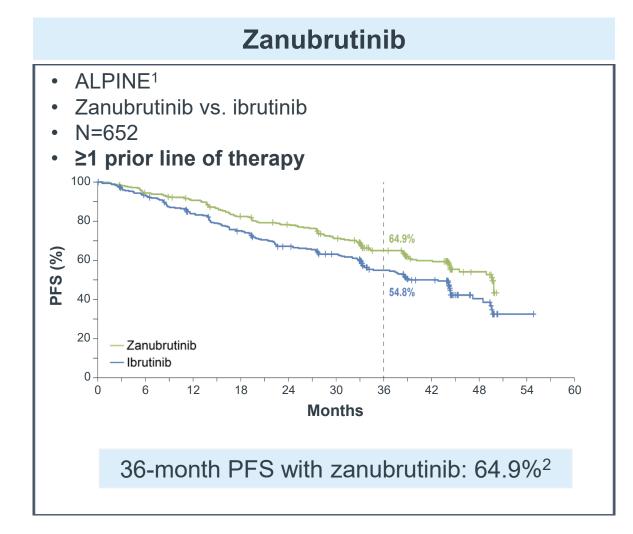

BTKi, BTK inhibitor; CI, confidence interval; mo, months; PFS, progression-free survival; SoC, standard of care. 1. Munir T *et al. Am J Hematol* 2019; 94 (12): 1353–1363.

Trial data: BTKi monotherapy vs. historic SoC therapies

BR, bendamustine and rituximab; BTKi, BTK inhibitor; CI, confidence interval; IdR, idelalisib and rituximab; mo, months; NR, not reached; PFS, progression-free survival; SoC, standard of care. 1. Ghia P *et al. J Clin Oncol* 2020; 38 (25): 2849–2861.


Trial data: Venetoclax + anti-CD20 vs. historic SoC therapies

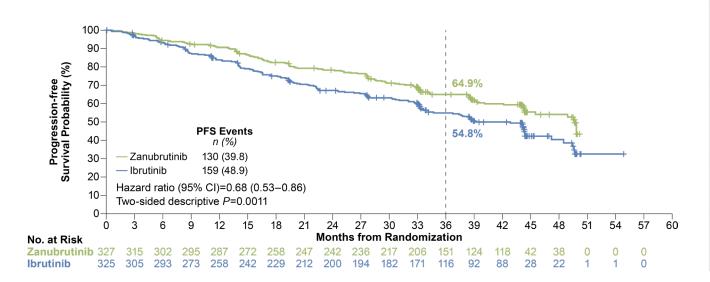
BR, bendamustine and rituximab; CD, cluster of differentiation; mo, months; PFS, progression-free survival; VenR, venetoclax and rituximab.


1. Seymour JF et al. Blood 2022; 140 (8): 839-850. 2. Seymour JF et al. Blood 2022; 140 (8): 839-850 - data supplement.

Trial data: Next-generation BTKis vs. ibrutinib

BTKi, BTK inhibitor; CI, confidence interval; del, deletion; HR, hazard ratio; mo, months; PFS, progression-free survival. 1. Byrd JC *et al. J Clin Oncol* 2021; 39 (31): 3441–3452.

Trial data: Next-generation BTKis vs. ibrutinib



ALPINE: Zanubrutinib vs. ibrutinib in R/R CLL/SLL

Extended follow-up (median: 39.0 months)

Significant PFS benefit with zanubrutinib over ibrutinib is sustained with extended follow-up over 3 years

PFS benefit with zanubrutinib was consistent across multiple sensitivity analyses

Sensitivity analysis	Zanu, n (%)	lbr, n (%)	HR (95% Cl)	Two-sided <i>P</i> -value
Accounting only for PD and death events that occurred during active treatment	76 (23.2)	85 (26.2)	0.69 (0.50–0.95)	0.0206
Censoring for new CLL/SLL therapies	129 (39.4)	157 (48.3)	0.68 (0.54–0.86)	0.0014
Censoring for death due to COVID-19	115 (35.2)	142 (43.7)	0.66 (0.52–0.85)	0.0013

CI, confidence interval; CLL, chronic lymphocytic leukemia; HR, hazard ratio; Ibr, ibrutinib; PD, progressive disease; PFS, progression-free survival; R/R, relapsed/refractory;

SLL, small lymphocytic lymphoma; Zanu, zanubrutinib.

Brown JR et al. Oral presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 202).

ALPINE: Zanubrutinib vs. ibrutinib in R/R CLL/SLL Extended follow-up (median: 39.0 months)

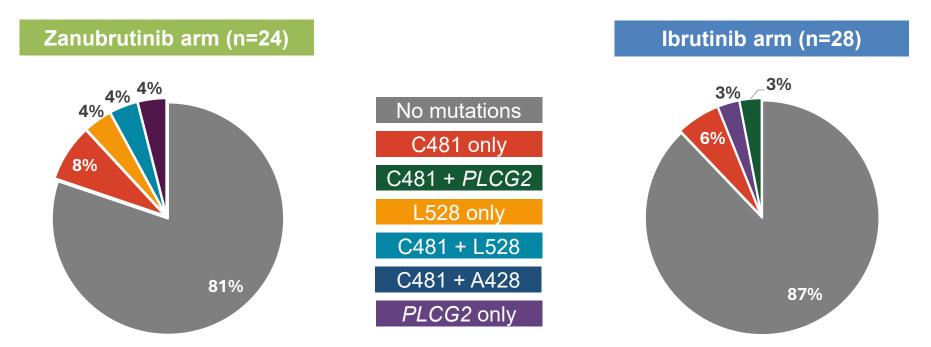
Zanubrutinib Ibrutinib (n=324) (n=324) Median (range) treatment duration, months 38.3 (0.4–54.9) 35.0 (0.1-58.4) 320 (98.8) 323 (99.7) Any grade AE, n (%) Grade 3–5 235 (72.5) 251 (77.5) Grade 5 41 (12.7) 40 (12.3) Serious AE, n (%) 165 (50.9) 191 (59.0) **AEs leading to:** Dose reduction, n (%) 47 (14.5) 59 (18.2) Dose interruption, n (%) 196 (60.5) 201 (62.0) Treatment discontinuation, n (%) 85 (26.2) 64 (19.8) 150 (46.3) Hospitalization, n (%) 180 (55.6)

Cardiac AEs

- Zanubrutinib: 24.7%
- Ibrutinib: 34.6%

Serious cardiac AEs

- Zanubrutinib: 3.4%
- Ibrutinib: 9.6%

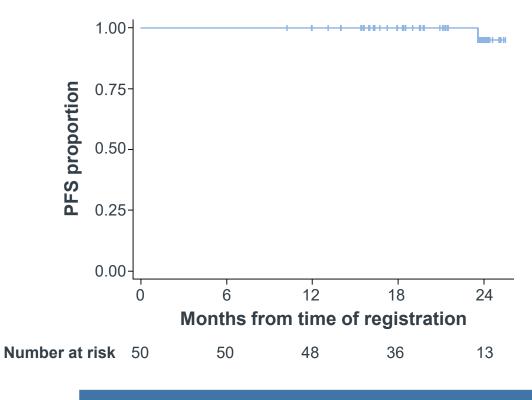

Fatal cardiac events

- Zanubrutinib: 0% (n=0)
- Ibrutinib: 1.9% (n=6)

AE, adverse event; CLL, chronic lymphocytic leukemia; R/R, relapsed/refractory; SLL, small lymphocytic lymphoma. Brown JR *et al*. Oral presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 202).

ALPINE: Acquired mutations in patients who progressed

High-sensitivity NGS was performed on blood samples from patients with PD*


Given the low incidence of non-C481 mutations, the data suggest that patients treated with covalent BTKis are likely to remain sensitive to other BTK-targeting therapies

*Excluding patients without paired baseline and PD blood samples (ibrutinib arm, n=1) and patients with Richter's transformation (n=2 from each of the zanubrutinib and ibrutinib arms). BTKi, BTK inhibitor; NGS, next-generation sequencing; PD, progressive disease. Brown JR *et al.* Poster 1890 at ASH 2023; San Diego, CA, USA, December 9–12, 2023.

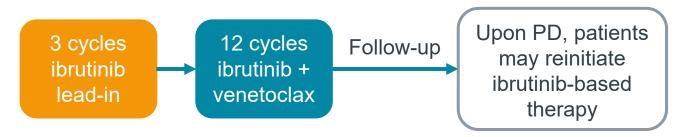
CLARITY: Ibrutinib + venetoclax in R/R CLL¹

- Phase II trial
- 12-month treatment with ibrutinib + venetoclax
- Primary endpoint: MRD-negative BM
 - $\circ~$ MRD in PB: 53%
 - $\circ~$ MRD in BM: 36%
- CR: 51%

	lbrutinib + venetoclax (N=54)
Median (range) prior lines of therapy	1 (1–6)
Previous FCR or BR, n (%)	45 (83)
Previous idelalisib, n (%)	11 (20)

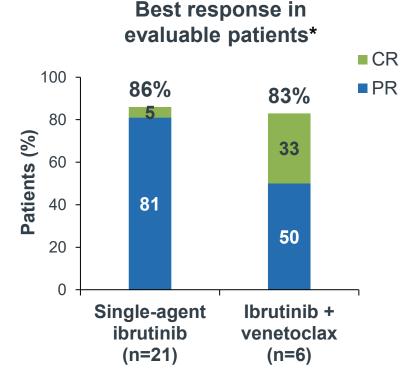
At 21 months' median follow-up, only 1 patient had experienced disease progression

BM, bone marrow; BR, bendamustine and rituximab; CLL, chronic lymphocytic leukemia; CR, complete response; FCR, fludarabine, cyclophosphamide, and rituximab; MRD, minimal residual disease;


PB, peripheral blood; PFS, progression-free survival; R/R, relapsed/refractory.

1. Hillmen P et al. J Clin Oncol 2019; 37 (30): 2722–2729. 2. Hillmen P et al. J Clin Oncol 2019; 37 (30): 2722–2729 – data supplement 3.

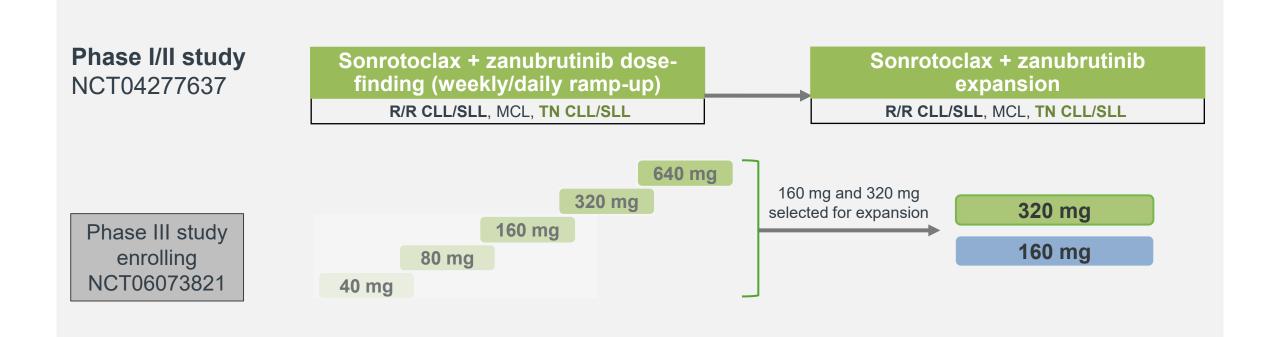
CAPTIVATE: Retreatment with ibrutinib-based therapy after 1L fixed-duration ibrutinib + venetoclax in CLL/SLL


- Phase II trial
- Patients were ≤70 years old
- Median (range) time on retreatment:
 - Single-agent ibrutinib (n=22): 17 (0–45) months
 - Ibrutinib + venetoclax (n=6): 14 (5–15) months

40 patients were evaluated for mutations at PD:

- 1 patient acquired a resistance-associated *BCL2* mutation
- No other clinically relevant mutations in *BTK*, *BCL2*, or *PLCG2* were observed

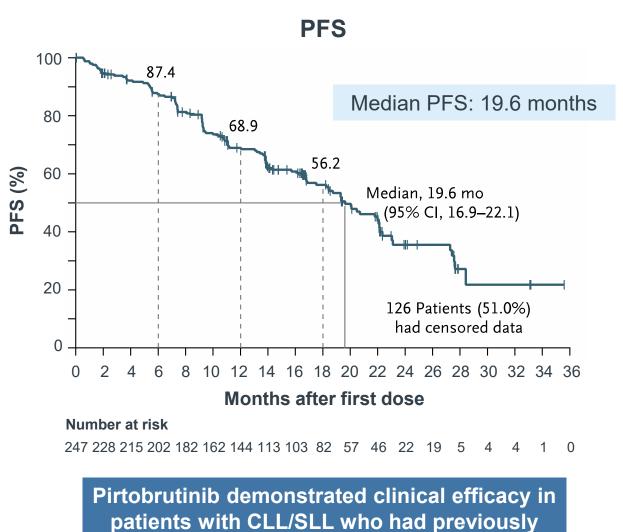
Ibrutinib-based retreatment demonstrated promising response rates in patients who progressed after fixed-duration ibrutinib + venetoclax


*One patient who initiated single-agent ibrutinib retreatment had not yet undergone response assessment. Patients who did not respond included 1 patient who experienced PR with lymphocytosis (5%),

1 patient who was diagnosed with Richter's transformation (5%), and 1 patient who was not evaluable because of therapy interruption (5%).

1L, first-line; CLL, chronic lymphocytic leukemia; CR, complete response; PD, progressive disease; PR, partial response; SLL, small lymphocytic lymphoma.

Ghia P et al. Oral presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 633).

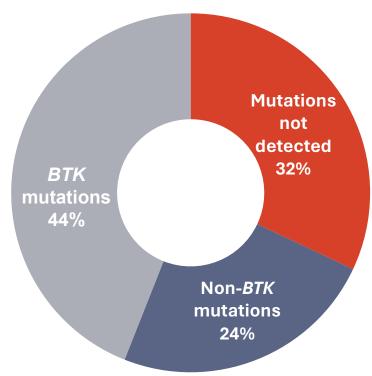

Next-generation combinations of BTK and BCL2 inhibitors

AE, adverse event; ASH, American Society of Hematology; CLL, chronic lymphocytic leukemia; MCL, mantle cell lymphoma; MRD, minimal residual disease; ORR, overall response rate; PFS, progression-free survival; QD, every day; R/R, relapsed/refractory; SLL, small lymphocytic lymphoma; TLS, tumor lysis syndrome; TN, treatment-naive. Tam CS *et al.* Oral presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 327).

BRUIN: Pirtobrutinib

- Non-covalent, reversible BTKi
 - Covalent BTKis bind directly to C481
 - Non-covalent BTKis interact with BTK via hydrogen bonds, ionic bonds, and hydrophobic interactions, inhibiting both WT and C481-mutant BTK
- Phase I/II trial
- N=317
- Median number of prior lines of therapy: 3
 - $_{\circ}$ $\,$ 78% of patients previously received a BTKi $\,$
 - $_{\circ}$ 40% of patients previously received a BCL2i
- ORR: 73%

received a covalent BTKi


CI, confidence interval; CLL, chronic lymphocytic leukemia; BCL2i, BCL2 inhibitor; BTKi, BTK inhibitor; mo, months; ORR, overall response rate; PFS, progression-free survival; SLL, small lymphocytic lymphoma; WT, wild-type. Mato AR *et al.* N Engl J Med 2023; 389 (1): 33–44.

BRUIN: Genomic evolution and resistance during pirtobrutinib therapy in covalent BTKi–pretreated CLL

- 88 patients developed PD while on pirtobrutinib
- Discontinuation of prior covalent BTKi therapy was due to:
 - PD in 75 patients (85%)
 - $_{\circ}$ Toxicity in 13 patients (15%)
- Median (range) time on pirtobrutinib: 16 (1.2–39) months

Among the 43 patients with C481 mutations, a decrease or complete clearance of C481 clones was observed at PD in most patients (84%)

The most common baseline alterations were mutations in *BTK* (53%), *TP53* (49%), *SF3B1* (34%), *ATM* (23%), *NOTCH1* (20%), *PLCG2* (14%), and *BCL2* (9%) Of 88 patients who progressed on pirtobrutinib, 68% acquired ≥1 mutation

CLL, chronic lymphocytic leukemia; mAb, monoclonal antibody.

1. ClinicalTrials.gov NCT05091424. Available at: https://clinicaltrials.gov/study/NCT05091424. Accessed February 2024. 2. Carlo-Stella C et al. Hematol Oncol 2023; 41 (Suppl 2): 63–65. 3. Kater AP et al. Blood 2021; 138 (Suppl 1): 2627. 4. Kater AP et al. Blood 2022; 140 (Suppl 1): 850–851.

Bispecific mAbs

RECRUITING 1

A Study Evaluating the Safety, Efficacy, and Pharmacokinetics of Mosunetuzumab and a Combined Regimen of Mosunetuzumab and Venetoclax in Participants With Relapsed or Refractory Chronic Lymphocytic Leukemia

2

ClinicalTrials.gov ID
 NCT05091424

028 | GLOFITAMAB MONOTHERAPY INDUCES DURABLE COMPLETE REMISSIONS AND HAS A MANAGEABLE SAFETY PROFILE IN PATIENTS WITH RICHTER'S TRANSFORMATION

<u>C. Carlo-Stella</u>¹, M. Hutchings², F. Offner³, E. Mulvihill⁴, J. Relf⁵, B. Byrne⁵, L. Lundberg⁴, M. Dickinson⁶ ¹Humanitas University and IRCCS Humanitas Research Hospital, Milan, Italy, ²Rigshospitalet, Copenhagen, Denmark, ³Universitair Ziekenhuis Gent, Ghent, Belgium, ⁴F. Hoffmann-La Roche Ltd, Basel, Switzerland, ⁵Roche Products Ltd, Welwyn Garden City, UK, ⁶Peter MacCallum Cancer Centre, Royal Melbourne Hospital and The University of Melbourne, Melbourne, Victoria, Australia

642.CHRONIC LYMPHOCYTIC LEUKEMIA: CLINICAL AND EPIDEMIOLOGICAL | NOVEMBER 5, 2021

Subcutaneous Epcoritamab in Patients with Relapsed/Refractory Chronic

1

Split-Screen < Share < < State <

3

CAR-T therapy: TRANSCEND study of liso-cel in R/R CLL/SLL 24-month median follow-up

- Patients who were previously treated with, or ineligible for, BTKi therapy
- ≥2 prior lines of therapy

Efficacy outcomes	BTKi progression / venetoclax failure subset at DL2 (n=50)
CR/CRi, %	20
uMRD rate in the blood, % (95% CI)	64 (49–77)
Median (95% CI) DoR, months	35.3 (12.4–NR)
Median (95% CI) OS, months	30.3 (15.0–NR)

Liso-cel demonstrated a clinical benefit with a manageable safety profile in patients after BTKi progression / venetoclax failure and in the full study population

BTKi, BTK inhibitor; CAR-T, chimeric antigen receptor T-cell; CI, confidence interval; CLL, chronic lymphocytic leukemia; CR, complete response; CRi, CR with incomplete marrow recovery; DL, dose level; DoR, duration of response; liso-cel, lisocabtagene maraleucel; NR, not reached; OS, overall survival; R/R, relapsed/refractory; SLL, small lymphocytic lymphoma; uMRD, undetectable minimal residual disease. Siddiqi T *et al.* Oral presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 330).

Allogeneic SCT

- One of the few curative options
 - Use has declined over the past decade¹
- Difficult to interpret the data
 - \circ No RCTs¹
 - Only very high-risk patients¹
- Long-term results of the GCLLSG CLL3X trial:2
 - N=100, of whom 90 were allografted
 - $_{\circ}$ 10-year PFS: 34%
 - OS: 51%

Allogeneic SCT should be reserved for rare cases of young patients who have exhausted all therapeutic options^{1,3}

What can we conclude for the treatment of R/R CLL?

Most trials evaluating targeted therapies in R/R CLL have been carried out in patients treated with first-line ICT

Head-to-head trials have demonstrated better safety profiles of next-generation BTKis vs. ibrutinib, and superior efficacy with zanubrutinib vs. ibrutinib in R/R CLL

The role of ibrutinib + venetoclax in treating these patients is not clear

Bispecific mAbs are likely to be a promising avenue of research, whereas CAR-T therapy has yet to prove its value in randomized trials