Debate:

Bispecific antibodies are a better therapeutic option than CAR-T therapies for early relapsing FL

Moderator: Professor Christian Buske *Pro*: Professor Pier Luigi Zinzani | *Con*: Professor Wojciech Jurczak Bispecific antibodies are a better therapeutic option than CAR-T therapies for early relapsing FL *Pro*

Professor Pier Luigi Zinzani University of Bologna, Italy

CAR-T, chimeric antigen receptor T-cell; FL, follicular lymphoma.

Disclosures

Company name	Consultant	Speakers bureau	Advisory board
Verastem Oncology	Х	Х	Х
Celltrion Healthcare		Х	Х
Gilead Sciences		Х	Х
Janssen-Cilag		Х	Х
Bristol Myers Squibb		Х	Х
Servier		Х	Х
Sandoz			Х
Merck Sharp & Dohme	Х	Х	Х
TG Therapeutics		Х	X
Takeda Pharmaceuticals		Х	Х
Roche		Х	Х
EUSA Pharma	Х	Х	X
Kyowa Kirin		Х	Х
Novartis	Х	Х	X
ADC Therapeutics			Х
Incyte		Х	Х
BeiGene		Х	Х

Anti-CD20×CD3 bispecific mAbs have shown great activity across B-cell lymphomas¹

Mosunetuzumab monotherapy is approved for the treatment of adult patients with R/R FL who have received ≥2 prior lines of systemic therapy²⁻⁴

Response rates observed with mosunetuzumab in patients with R/R FL:² ORR: 80% CR: 60%

CD, cluster of differentiation; CR, complete response; FL, follicular lymphoma; mAb, monoclonal antibody; ORR, objective response rate; R/R, relapsed/refractory.

 Falchi L *et al. Blood* 2023; 141 (5): 467–480. 2. Budde LE *et al. Lancet Oncol* 2022; 23 (8): 1055–1065. 3. FDA grants accelerated approval to mosunetuzumab-axgb for relapsed or refractory follicular lymphoma. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-mosunetuzumab-axgb-relapsed-or-refractory-follicular-lymphoma. Accessed February 2024.
 Roche Registration GmbH. Lunsumio – summary of product characteristics; November 2023.

Bispecific mAbs are 'off-the-shelf' drugs¹

Bispecific mAbs can be administered to the patient as soon as the treatment decision is made¹

Patients who are treated with CAR-T therapy have to wait for its manufacture and may require bridging therapy prior to treatment^{1–3}

With bispecific mAbs, CRs are common and may be durable for years beyond discontinuation of treatment

Mosunetuzumab monotherapy: Durability of responses

- R/R FL
- ≥2 prior lines of therapy

DoR for CR vs. PR (May 2023 data cut-off)

Patients at risk

 CR
 54
 53
 52
 48
 45
 44
 43
 42
 41
 38
 37
 34
 26
 25
 24
 23
 23
 15

 PR
 16
 12
 8
 4
 3
 3
 NE
 NE

Median (95% CI) DoR in patients with CR (n=54*), months	36 (NE–NE)
Median (95% CI) DoR in patients with PR (n=16*), months	4 (2.5–6.7)

73% (95% CI: 60.8–86.8) of patients who achieved CR were estimated to be alive and progression-free 30 months after their first response

Fixed-duration treatment with mosunetuzumab: 8 cycles if CR was observed after Cycle 8 and 17 cycles if PR/SD was observed after Cycle 8. *Responders per INV assessment.

CI, confidence interval; CR, complete response; DoR, duration of response; FL, follicular lymphoma; INV, investigator; mAb, monoclonal antibody; NE, not estimable; PR, partial response; R/R, relapsed/refractory; SD, stable disease.

Schuster SJ et al. Oral presentation at ASH 2023; San Diego, CA, USA, December 9-12, 2023 (Abstract 603).

Bispecific mAbs are effective in patients failing CAR-T therapy^{1,2}

Single-Agent Mosunetuzumab Shows Durable Complete Responses in Patients With Relapsed or Refractory B-Cell Lymphomas: Phase I Dose-Escalation Study

Lihua E. Budde, MD¹; Sarit Assouline, MD²; Laurie H. Sehn, MD³; Stephen J. Schuster, MD⁴; Sung-Soo Yoon, MD, PhD⁵; Dok Hyun Yoon, MD, PhD⁶; Matthew J. Matasar, MD⁷; Francesc Bosch, MD, PhD⁹; Won Seog Kim, MD, PhD⁹; Loretta J. Nastoupil, MD¹⁰; Ian W. Flinn, MD, PhD¹¹; Mazyar Shadman, MD, MPH¹²; Catherine Diefenbach, MD¹³; Carol O'Hear, MD, PhD¹⁴; Huang Huang, MSc¹⁵; Antonia Kwan, MBBS, PhD¹⁴; Chi-Chung Li, PhD¹⁴; Emily C. Piccione, PhD¹⁴; Michael C. Wei, MD, PhD¹⁴; Shen Yin, PhD¹⁴; and Nancy L. Bartlett, MD¹⁶ Mosunetuzumab has led to CRs in patients with R/R B-NHL who have received prior CAR-T therapy^{1,2}

B-NHL, B-cell non-Hodgkin lymphoma; CAR-T, chimeric antigen receptor T-cell; CR, complete response; mAb, monoclonal antibody; R/R, relapsed/refractory. 1. Schuster SJ *et al.* Blood 2019; 134 (Suppl 1): 6. 2. Budde LE *et al.* J Clin Oncol 2022; 40 (5): 481–491.

Serious CRS events are less common with bispecific mAbs than with CAR-T therapies, and high-grade ICANS is almost never seen

	CRS	, %	Neurologic AEs, %			
	Any Grade	Grade ≥3	Any Grade	Grade ≥3		
Mosun ¹	44	2	6	0		
Axi-cel ²	78	6*	56	15		
Tisa-cel ³	49	0	37	3†		

This slide includes data from different clinical trials. These data are meant for demonstration purposes only and are not meant for cross-trial comparison purposes.

*One Grade 5 event occurred. [†]Three Grade 3 and one Grade 4 event occurred.

AE, adverse event; axi-cel, axicabtagene ciloleucel; CAR-T, chimeric antigen receptor T-cell; CRS, cytokine release syndrome; ICANS, immune effector cell–associated neurotoxicity syndrome; mAb, monoclonal antibody; mosun, mosunetuzumab; tisa-cel, tisagenlecleucel.

1. Budde LE et al. Lancet Oncol 2022; 23 (8): 1055–1065. 2. Jacobson CA et al. Lancet Oncol 2022; 23 (1): 91–103. 3. Fowler NH et al. Nat Med 2022; 28 (2): 325–332.

The MoA and toxicity profile of bispecific mAbs make them ideal combination partners¹

• Ongoing trials in patients with R/R FL:¹

Mosunetuzumab plus lenalidomide

- NCT04246086
- Phase Ib study

Epcoritamab plus R²

- NCT04663347
- Phase Ib/II study

Glofitamab plus obinutuzumab

- NCT03075696
- Phase I/II study

Glofitamab plus R-CHOP

- NCT03467373
- · Phase Ib study

Bispecific mAbs are also being investigated in 1L FL²

Abstract #604

Subcutaneous mosunetuzumab as first-line therapy for patients with high tumor-burden follicular lymphoma: First results of a multicenter phase 2 study

Lorenzo Falchi¹, Michelle Okwali¹, Paola Ghione¹, Colette Owens¹, Paul Hamlin¹, Jennifer Lue¹, Zachary Epstein-Peterson¹, Anita Kumar¹, M. Lia Palomba¹, Pallawi Torka¹, Alexandra Ferreira Lopes¹, Anastasia Martinova¹, Lauren Wood¹, Clare Grieve¹, Walter Ramos-Amador¹, Lori Leslie², Joseph Roswarski³, Kieron Dunleavy³, Santosha Vardhana¹, Andrew Zelenetz¹, Gilles Salles¹

¹Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY; ²Lymphoma Division, John Theurer Cancer Center, Hackensack, NJ; ³Lymphoma, Hematologic Malignancies Division, Lombardi Comprehensive Cancer Center, Washington, DC

Presented at the 65th American Society of Hematology Annual Meeting and Exposition; December 9–12, 2023; San Diego, CA

1L, first-line; FL, follicular lymphoma; mAb, monoclonal antibody; MoA, mechanism of action; R², rituximab plus lenalidomide; R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristin, prednisone; R/R, relapsed/refractory.

1. Falchi L et al. Blood 2023; 141 (5): 467–480. 2. Falchi L et al. Oral presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 604).

Why should bispecific mAbs be the 3L treatment for FL?

CRs are common and durable for years beyond discontinuation of treatment

Bispecific mAbs are effective in patients failing CAR-T therapy

Serious CRS and ICANS are less common with bispecific mAbs than with CAR-T therapy

The MoA and toxicity profile of bispecific mAbs make them ideal combination partners

3L, third-line; CAR-T, chimeric antigen receptor T-cell; CD, cluster of differentiation; CR, complete response; CRS, cytokine release syndrome; FL, follicular lymphoma; ICANS, immune effector cell–associated neurotoxicity syndrome; mAb, monoclonal antibody; MoA, mechanism of action. Slide courtesy of Pier Luigi Zinzani.

Finally, bispecific mAbs are a more sustainable option than CAR-T therapy

Bispecific antibodies are a better therapeutic option than CAR-T therapies for early relapsing FL Con

Professor Wojciech Jurczak Maria Skłodowska-Curie National Research Institute of Oncology, Poland

CAR-T, chimeric antigen receptor T-cell; FL, follicular lymphoma.

Prof. Wojciech Jurczak MD, PhD wojciech.jurczak@lymphoma.edu.pl

Maria Sklodowska-Curie National Research Institute of Oncology Garncarska 11, 31-115 Kraków, Poland

Disclosures

- Advisory boards: AstraZeneca, BeiGene, Janssen, Loxo Oncology, Roche, Sandoz
- Research funding: AbbVie, AstraZeneca, Bayer, BeiGene, Celgene, Celltrion, Debiopharm, Epizyme, Incyte, Janssen, Loxo Oncology, MEI Pharma, Merck, MorphoSys, Novo Nordisk, Roche, Sandoz, Takeda, TG Therapeutics

Challenges in R/R FL

- FL is a chronic, indolent, and incurable disease with frequent relapses^{1–3}
- It is characterized by long survival, with R/R disease often requiring multiple lines of therapy^{1–3}
- Survival outcomes decrease with each line of therapy⁴

Multiple therapies are available for patients with R/R FL, but there is currently no universally defined treatment approach³

1L, first-line; 2L, second-line; 3L, third-line; 4L, fourth-line; 5L, fifth-line; 6L, sixth-line; FL, follicular lymphoma; PFS, progression-free survival; R/R, relapsed/refractory.

1. Skarbnik AZ et al. Front Oncol 2023; 13: 1120358. 2. Hanel W et al. Hematol Oncol 2021; 14 (1): 104. 3. Gupta G et al. Am J Blood Res 2022; 12 (4): 105–124. 4. Batlevi CL et al. Blood Cancer J 2020; 10 (7): 74.

Therapies approved in R/R FL

Rituximal	b ¹										
	Obinutuzumab ² Rituximab-lenalidomide ³ Tazemetostat ³								February 2021 The FDA approved liso-cel for adult patients with R/R LBCL after ≥2 lines of systemic therapy, including patients with Grade 3B FL ⁶		
I	Idelalisib	3,4		Copanlis	Duvelisil ib ³) 3	ł	Umbralisib	3	Zanubrutinib–obinutuzumab ⁵	March 2021 The FDA granted accelerated approval to axi-cel for adult patients with R/R FL after ≥2 lines of systemic therapy ⁷
								Liso-cel (Axi-cel (Z	TRANSCEI UMA-5) ⁷ Tisa-cel (ND FL) ⁶ (ELARA) ⁸ Mosunetuzumab ⁹	May 2022 The FDA approved tisa-cel for adult patients with R/R FL after ≥2 lines of systemic therapy ⁸
	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	

axi-cel, axicabtagene ciloleucel; FDA, Food and Drug Administration; FL, follicular lymphoma; LBCL, large B-cell lymphoma; liso-cel, lisocabtagene maraleucel; R/R, relapsed/refractory; tisa-cel, tisagenlecleucel. 1. Roche Registration GmbH. MabThera – summary of product characteristics; November 2023. 2. Obinutuzumab. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/obinutuzumab. 3. Lopedote P *et al. Cancer Manag Res* 2023; 15: 257–264. 4. FDA approves PI3K inhibitor, idelalisib for treatment of relapsed CLL, FL and SLL. Available at: https://www.esmo.org/oncology-news/archive/fda-approvespi3k-inhibitor-idelalisib-for-treatment-of-relapsed-cll-follicular-lymphoma-and-sll. 5. CHMP post-authorisation summary of opinion for Brukinsa. Available at: https://www.ema.europa.eu/en/documents/smop/chmp-postauthorisation-positive-summary-opinion-brukinsa_en.pdf. 6. FDA approves lisocabtagene maraleucel for relapsed or refractory large B-cell lymphoma. Available at: https://www.fda.gov/drugs/resources-informationapproved-drugs/fda-approves-lisocabtagene-maraleucel-refractory-large-b-cell-lymphoma. 7. FDA grants accelerated approval to axicabtagene ciloleucel for relapsed or refractory-follicular-lymphoma. 8. FDA approves drugs/fda-grants-accelerated-approved-drugs/fda-approves-tisagenlecleucel-relapsed-or-refractory-follicular-lymphoma. 9. FDA grants accelerated approved-drugs/fda-grants-accelerated approval to mosunetuzumab-axgb for relapsed or refractory follicular lymphoma. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated approved-drugs/fda-grants-accelerated approval to mosunetuzumab-axgb for relapsed or refractory follicular lymphoma. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-mosunetuzumab-axgb-relapsed-orrefractory-follicular-lymphoma. All websites accessed February 2024.

CAR T cells have evolved, with each generation better armed than the last

1st generation: CD247 ITAM domain

2nd and 3rd generation: CD247 ITAM domain + 1–2 co-stimulation domains

4th **generation:** CD247 ITAM domain + co-stimulation domains + genes enhancing IL-12 production

5th generation: TRUCK

axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CD, cluster of differentiation; ITAM, immunoreceptor tyrosine-based activation motif; liso-cel, lisocabtagene maraleucel; tisa-cel, tisagenlecleucel; TRUCK, T cell redirected for universal cytokine-mediated killing. Kim DW *et al. Biomolecules* 2020; 10 (2): 263.

Special ops vs. conscript army

axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CD, cluster of differentiation; Ig, immunoglobulin; liso-cel, lisocabtagene maraleucel; mAb, monoclonal antibody; TAA, tumor-associated antigen; tisa-cel, tisagenlecleucel.

1. Titov A et al. Cancers (Basel) 2020; 12 (1): 125. 2. Singh A et al. Br J Cancer 2021; 124 (6): 1037–1048.

Median follow-up of CAR-T therapies and bispecific mAbs in clinical studies

axi-cel, axicabtagene ciloleucel; CAR-T, chimeric antigen receptor T-cell; FL, follicular lymphoma; liso-cel, lisocabtagene maraleucel; mAb, monoclonal antibody; NHL, non-Hodgkin lymphoma; tisa-cel, tisagenlecleucel. 1. Neelapu SS *et al.* Poster presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 4868). 2. Schuster SJ *et al.* Oral presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 601). 3. Morschhauser F *et al.* Oral presentation at ICML 2023; Lugano, Switzerland, June 13–17, 2023 (Abstract LBA4). 4. Schuster SJ *et al.* Oral presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 603). 5. Linton K *et al.* Poster presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 1655).

In ZUMA-5, good long-term survival outcomes were achieved with axi-cel in patients with R/R iNHL, including R/R FL

Data cut-off: March 31, 2023.

*Eligible patients had R/R FL or MZL after ≥2 lines of therapy, including an anti-CD20 mAb plus an alkylating agent.

axi-cel, axicabtagene ciloleucel; CD, cluster of differentiation; CI, confidence interval; FL, follicular lymphoma; iNHL, indolent non-Hodgkin lymphoma; mAb, monoclonal antibody; mo, months;

MZL, marginal zone lymphoma; NE, not estimable; OS, overall survival; PFS, progression-free survival; R/R, relapsed/refractory.

Neelapu SS et al. Poster presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 4868).

CAR-T therapies have comparable efficacy and safety to bispecific mAbs in R/R FL

	Patients, n	ORR, %	CR, %	PFS, %	Grade ≥3 AEs, %	Serious AEs, %
Axi-cel ^{1,2}	124	94*	79*	18-month PFS: 69	85	46
Tisa-cel ^{3,4}	97	86	68	24-month PFS: 57 [†]	78	28 [‡]
Liso-cel ⁵	130	97	94	12-month PFS: 81	NR	NR
Mosunetuzumab ^{6,7}	90	80§	60	18-month PFS: 47	72	47
Epcoritamab ⁸	128	82	63	18-month PFS: ~50 [∥]	69	NR

This slide includes data from different clinical trials. These data are meant for demonstration purposes only and are not meant for cross-trial comparison purposes.

*ORR and CR data based on n=86. ‡Estimated PFS. ‡Serious AE within 8 weeks after infusion. §Objective response rate. I18-month PFS estimated based on Kaplan–Meier curve.

AE, adverse event; axi-cel, axicabtagene ciloleucel; CAR-T, chimeric antigen receptor T-cell; CR, complete response; FL, follicular lymphoma; liso-cel, lisocabtagene maraleucel; mAb, monoclonal antibody;

NR, not reported; ORR, overall response rate; PFS, progression-free survival; R/R, relapsed/refractory; tisa-cel, tisagenlecleucel.

1. Jacobson CA *et al. Lancet Oncol* 2022; 23 (1): 91–103. 2. Palomba ML *et al. Expert Rev Anticancer Ther* 2023; 23 (2): 199–206. 3. Dreyling M *et al. Blood* 2024: blood.2023021567. 4. Fowler NH *et al. Nat Med* 2022; 28 (2): 325–332. 5. Morschhauser F *et al.* Oral presentation at ICML 2023; Lugano, Switzerland, June 13–17, 2023 (Abstract LBA4). 6. Budde LE *et al. Lancet Oncol* 2022; 23 (8): 1055–1065. 7. Schuster SJ *et al.* Oral presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 603). 8. Linton K *et al.* Poster presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 1655).

Real-world safety and efficacy outcomes observed with CAR-T therapies are similar to clinical trial data

The rate of severe toxicities observed in the DESCAR-T registry was comparable with that from the ELARA trial (tisa-cel)

	Patient population* (N=70)	
CRS, n (%)		
Any	52 (74.3)	
Grade 1–2	51 (72.9)	
Grade 3–4	1 (1.4)	
Neurotoxicity, n (%)		Real-wor
Any	19 (27.1)	rates to C
Grade 1–2	16 (22.9)	
Grade 3–4	3 (4.3)	
MAS (any grade), n (%)	0	
Persistent Grade ≥3 cytopenia (>1 month), n (%)		
Anemia	6 (8.6)	
Thrombocytopenia	13 (18.6)	
Neutropenia	35 (50.0)	

Real-world data confirmed very high response rates to CAR-T treatment in patients with R/R FL ORR: 96% CRR: 86%

*Patients treated with tisa-cel (n=62) or axi-cel (n=8).

axi-cel, axicabtagene ciloleucel; CAR-T, chimeric antigen receptor T-cell; CRR, complete response rate; CRS, cytokine release syndrome; FL, follicular lymphoma;

MAS, macrophage activation syndrome; ORR, overall response rate; R/R, relapsed/refractory; tisa-cel, tisagenlecleucel.

Bachy E et al. Oral presentation at ASH 2023; San Diego, CA, USA, December 9–12, 2023 (Abstract 296).

Both CAR-T therapies and bispecific mAbs are time-limited therapies, but...^{1–3}

CAR-T, chimeric antigen receptor T-cell; IV, intravenous; mAb, monoclonal antibody.

1. Jacobson CA et al. Lancet Oncol 2022; 23 (1): 91–103. 2. Morschhauser F et al. Oral presentation at ICML 2023; Lugano, Switzerland, June 13–17, 2023 (Abstract LBA4).

3. Fowler NH et al. Nat Med 2022; 28 (2): 325–332. 4. Budde LE et al. Lancet Oncol 2022; 23 (8): 1055–1065.

CAR-T therapies vs. bispecific mAbs in early relapsing FL

Trial data are more mature, with longer follow-up compared with bispecific mAbs

CAR-T therapies have comparable efficacy and safety to bispecific mAbs

Real-world outcomes with CAR-T therapies are similar to clinical trial data

Single IV infusion vs. prolonged treatment with bispecific mAbs