Next-generation BTK inhibitors for relapsed/refractory B-cell malignancies: What are the options and how do they compare?

Monday, September 27, 2021 | 17:30–19:00 (CEST)

September 2021 | 0921--MRC-085

Welcome and introductions

Chair: Professor Wojciech Jurczak

Disclosures

- Honoraria: AstraZeneca, BeiGene, Celgene, Janssen
- Advisory board: BeiGene, Janssen

Disclaimers

- The information contained herein is intended for healthcare professionals only and is given for educational purposes only. This document is not intended for professional counseling or advice.
- The views expressed in the presentations are those of the speakers and may not necessarily
 reflect the opinion of BeiGene. BeiGene does not guarantee the accuracy or reliability of the
 information provided herein and expressly disclaims liability for any errors or omissions in
 this information.
- Any case studies included in presentations refer to clinical cases and images from the clinical practice of the speaker. They have been interpreted and evaluated by the speaker based on his/her knowledge and experience.
- Prescribing information (PI) may vary depending on local approval in each country. Therefore, before prescribing any product, always refer to local materials such as the PI and/or the summary of product characteristics (SPC).
- Zanubrutinib is not approved for the treatment of Waldenström's macroglobulinemia outside of the US and Canada.

Housekeeping

Please note that personal recording of this meeting is not permitted (a recording will be available to watch soon after the meeting)

A post-meeting survey will be shared at the end of the webinar; we would greatly appreciate your feedback

Introducing the speakers

Wojciech Jurczak Maria Skłodowska-Curie National Research Institute of Oncology, Poland

Paolo Ghia The Vita-Salute San Raffaele University, Italy

Federico Pea University of Bologna, Italy

Alessandra Tedeschi Niguarda Cancer Center, Italy

Agenda

17:30	Welcome and introductions	Wojciech Jurczak
17:35	What are the clinical implications of the different pharmacologic properties of BTK inhibitors?	Federico Pea
17:55	Next-generation BTK inhibitor monotherapy versus ibrutinib in the treatment of relapsed/refractory CLL/SLL	Paolo Ghia
18:20	Next-generation BTK inhibitor monotherapy in the treatment of relapsed/refractory B-cell lymphomas	Alessandra Tedeschi
18:35	Discussion and audience Q&A	Panel: All
18:55	Summary and meeting close	Wojciech Jurczak

Audience questions

- Please exit full-screen and enter your question in the submission box for the panel to answer during the Q&A session
 - You can vote for the questions you would most like the panel to answer during the Q&A session
- Please note that it may not be possible for the panel to answer all of the questions that are submitted

BTK inhibitors Current EMA and FDA approval status

	Zanubrutinib ^{1,2}	Acalabrutinib ^{3,4}	Ibrutinib ^{5,6}
EMA	 Not approved in any indication Sept 2021: CHMP adopted a positive opinion, recommending the granting of a marketing authorisation for the treatment of WM 	 Indicated for treatment of adult patients with: TN CLL (monotherapy and with obinutuzumab) R/R CLL (monotherapy) 	 Indicated for treatment of adult patients with: R/R MCL (monotherapy) TN WM patients unsuitable for immunochemotherapy (monotherapy and with rituximab) R/R WM (monotherapy and with rituximab) TN CLL (monotherapy and with rituximab or obinutuzumab) R/R CLL (monotherapy and +BR)
FDA	 Indicated for treatment of adult patients with: R/R MCL WM R/R MZL patients who have received ≥1 prior anti-CD20-based therapy 	Indicated for treatment of adult patients with: • R/R MCL • CLL/SLL	 Indicated for treatment of adult patients with: R/R MCL CLL (+/- 17p deletion) WM MZL patients who require systemic therapy and have received ≥1 prior anti-CD20-based therapy cGVHD after failure of ≥1 lines of systemic therapy

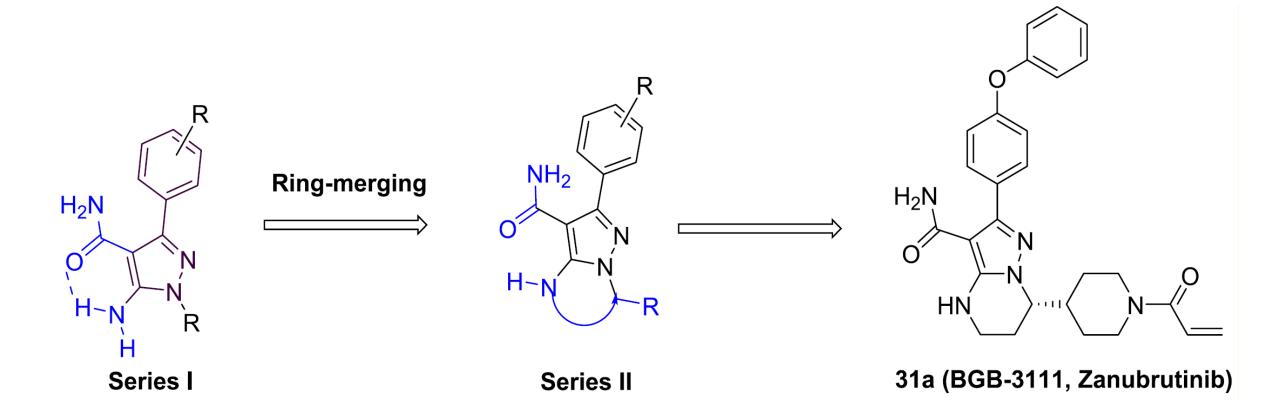
BR, bendamustine and rituximab; BTK, Bruton's tyrosine kinase; cGVHD, chronic graft versus host disease; CLL, chronic lymphocytic leukemia; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; PI, Prescribing Information; R/R, relapsed/refractory (>1 prior therapy); SmPC, Summary of Product Characteristics; WM, Waldenström's macroglobulinemia.

1. EMA: Brukinsa. Available at: https://www.ema.europa.eu/en/medicines/human/summaries-opinion/brukinsa. 2. FDA: Brukinsa PI. Available at:

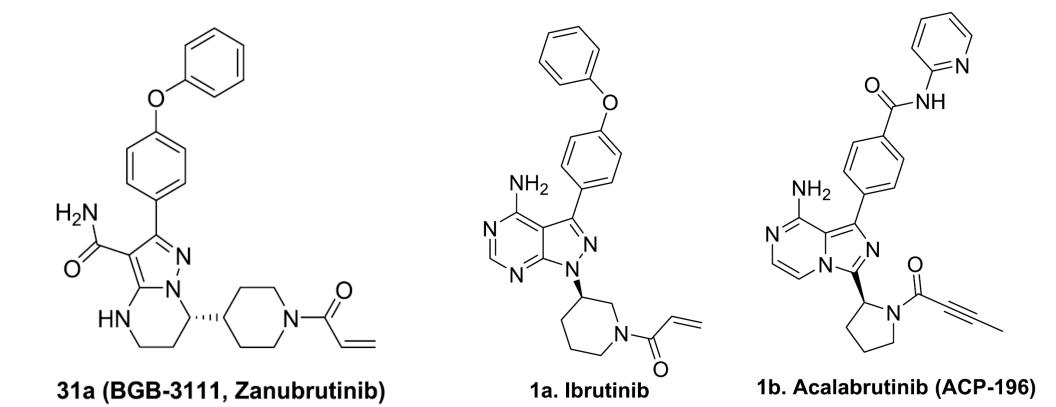
https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/213217s005lbl.pdf. 3. EMA: Calquence SmPC. Available at: https://www.ema.europa.eu/en/documents/product-information/calquence-epar-product-

information_en.pdf. 4. FDA: Calquence PI. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/210259s006s007lbl.pdf. 5. EMA: Imbruvica SmPC. Available at:

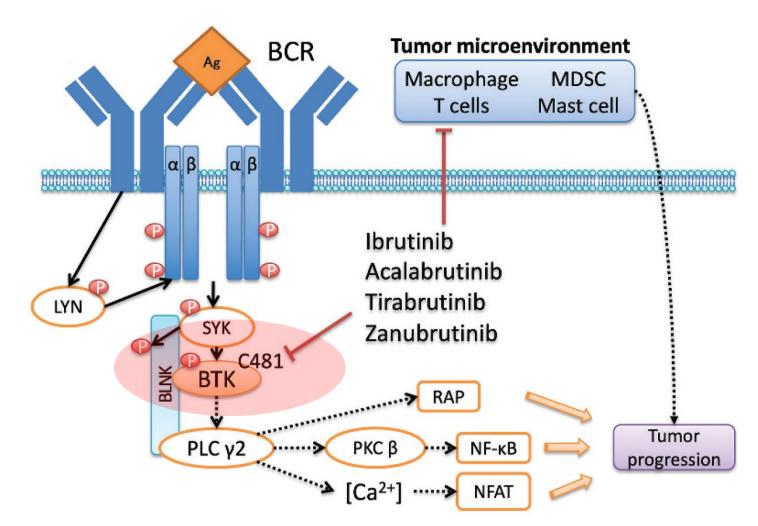
https://www.ema.europa.eu/en/documents/product-information/imbruvica-epar-product-information_en.pdf. 6. FDA: Imbruvica PI. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210563s000lbl.pdf. All accessed September 2021.


What are the clinical implications of the different pharmacologic properties of BTK inhibitors?

Professor Federico Pea Department of Surgical and Medical Sciences, Alma Mater Studiorum, University of Bologna, Italy University Hospital IRCCS Policlinico Sant'Orsola, Bologna, Italy


Disclosures

- **Speakers bureau**: Angelini, Basilea Pharmaceutica, BeiGene, Gilead, Hikma, MSD, Pfizer, Sanofi-Aventis, Shionogi, Sun Pharma
- **Consultant**: Angelini, Basilea Pharmaceutica, BeiGene, Gilead, Hikma, MSD, Novartis, Pfizer, Sanofi-Aventis, Shionogi, Thermo Fisher


Discovery of zanubrutinib (BGB-3111)

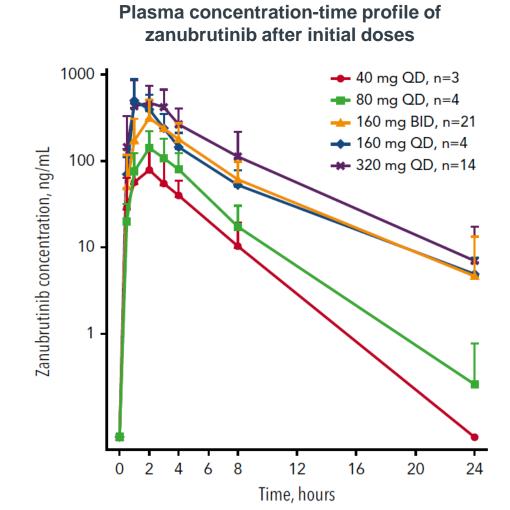
First- and second-generation BTK inhibitors

Mechanism of action of BTK inhibitors on B cells

Ag, antigen; BCR, B-cell receptor; BTK, Bruton's tyrosine kinase; MDSC, myeloid-derived suppressor cell. Makita S *et al. Expert Opin Drug Saf* 2020; 19 (9): 1105–1120.

Molecular targets of the various BTK inhibitors

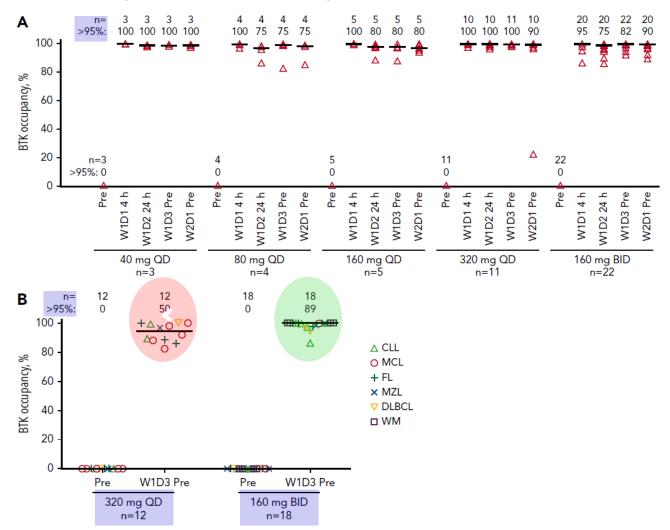
Variable	Inhibitor			
	Ibrutinib	Acalabrutinib	Zanubrutinib	Tirabrutinib
Target	ВТК	BTK	ВТК	ВТК
Major off-targets	ITK	Minimal	ITK	TEC
	EGFR		(weak)	(weak)
	TEC			
	BMX			
Anti-platelet activity	Yes	No	No	No


Biochemical kinase selectivity of 31a (zanubrutinib) and ibrutinib

enzyme	IC ₅₀ (nM) of 31a	IC ₅₀ (nM) of Ibrutinib	selectivity of 31a	selectivity of Ibrutinib
BTK ^c	0.30 ± 0.06^{b}	0.18 ± 0.04^{b}		
ITK ^c	56 ± 12^{b}	3.0 ± 0.7^{b}	187	17
TEC ^c	2.0 ± 0.8^{b}	0.57 ± 0.18^{b}	6.7	3.2
JAK3 ^c	580 ± 21^{b}	10 ± 2^{b}	1933	56
EGFR ^c	2.6 ± 1.0	0.75 ± 0.14	8.7	4.2
HER2 ^c	530 ± 273^{b}	19 ± 7^{b}	1800	106
BLK^d	1.13	0.23	1.2	0.5
BMX^d	0.62	0.5	0.7	1.1
BRK^d	33	18	36	39
HER4^d	1.58	0.25	1.7	0.5
FGR^d	155	1.82	168	4.0
FRK/PTK5 ^d	379	79	412	172
LCK^{d}	187	2.85	203	6.2
TXK^d	2.95	2.89	3.2	6.3

^an: number of determinations. ^bn=3; where unspecified n=1. ^cNote: IC₅₀ values of compounds were measured at K_m of ATP for the kinases and with 1hr preincubation at BeiGene by using a TR-FRET assay. ^dData were generated at Reaction Biology Corp. using 33P-TAP and filter-binding assay. IC₅₀ values of compounds were measured at 1 µM ATP and with 1hr preincubation. Selectivity for these kinases was calculated based on IC₅₀ of BTK generated in Reaction Biology Corp. for **31a** (0.92 nM) and ibrutinib (0.46 nM).

BTK, Bruton's tyrosine kinase, IC₅₀, half-maximal inhibitory concentration; TR-FRET, time-resolved Förster resonance energy transfer. Guo Y *et al. J Med Chem* 2019; 62: 7923–7940.


Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies, and safety and efficacy evaluation in CLL

BID, twice a day; BTK, Bruton's tyrosine kinase; CLL, chronic lymphocytic leukemia; QD, once a day. Tam CS *et al. Blood* 2019; 134 (11): 851–859.

Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies, and safety and efficacy evaluation in CLL

BTK occupancy in (A) PBMCs and (B) nodal tissue

BID, twice a day; BTK, Bruton's tyrosine kinase; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; QD, once a day; PBMC, peripheral blood mononuclear cell; WM, Waldenström's macroglobulinemia. Tam CS *et al. Blood* 2019; 134 (11): 851–859.

Alternative names	BGB-3111, zanubrutinib		
Class	Amides, Actineoplastics, Phenyl ethers, Piperidines, Pyrazoles, Pyrimidines, Small molecules		
Mechanism of action	Bruton's tyrosine kinase inhibitor		
Route of Administration	Oral		
Pharmacodynamics	Highly selective for BTK; inhibits BTK with potency similar to ibrutinib; less off-target kinase inhibition than ibrutinib; associated with near complete and sustained BTK occupancy in PBMCs as well as lymph nodes		

Alternative names	BGB-3111, zanubrutinib		
Class	Amides, Actineoplastics, Phenyl ethers, Piperidines, Pyrazoles, Pyrimidines, Small molecules		
Mechanism of action	Bruton's tyrosine kinase inhibitor		
Route of Administration	Oral		
Pharmacodynamics	Highly selective for BTK; inhibits BTK with potency similar to ibrutinib; less off-target kinase inhibition than ibrutinib; associated with near complete and sustained BTK occupancy in PBMCs as well as lymph nodes		

Alternative names	BGB-3111, zanubrutinib		
Class	Amides, Actineoplastics, Phenyl ethers, Piperidines, Pyrazoles, Pyrimidines, Small molecules		
Mechanism of action	Bruton's tyrosine kinase inhibitor		
Route of Administration	Oral		
Pharmacodynamics	Highly selective for BTK; inhibits BTK with potency similar to ibrutinib; less off-target kinase inhibition than ibrutinib; associated with near complete and sustained BTK occupancy in PBMCs as well as lymph nodes		
Pharmacokinetics	Median time to C _{max} ≈2 h; minimal accumulation; volume of distribution at steady state 881 L; mean half-life ≈2–4 h		

Population pharmacokinetic analysis of the BTK inhibitor zanubrutinib in healthy volunteers and patients with B-cell malignancies

Summary of studies included in the population PK analysis

BID, twice a day; BTK, Bruton's tyrosine kinase;

Ou YC et al. Clin Transl Sci 2021; 14 (2): 764-772.

WM, Waldenström's macroglobulinemia.

CLL, chronic lymphocytic leukemia; PK, pharmacokinetic; QD, once a day; SLL, small lymphocytic leukemia;

Study no.	Dose regimen	N	Study description	PK sampling design
BGB- 3111-AU-003 (NCT02343120)	40 mg, 80 mg, 160 mg, and 320 mg q.d. 160 mg b.i.d.	337	A phase I, open-label, multiple-dose, dose escalation and expansion study to investigate the safety and pharmacokinetics of the BTK inhibitor BGB-3111 in patients with B-cell lymphoid malignancies	Part 1: W1D1: Predose, 0.5, 2, 3, 4, 8, 24 hours W2D1: Predose, 0.5, 2, 3, 4, 7, 8 hours W5D1 and W9D1: Predose Part 2: W1D1 and W2D1: Predose, 2 hours
BGB-3111-1002 (NCT03189524)	320 mg q.d. 160 mg b.i.d.	44	A phase I clinical study to investigate the safety, tolerability, and PKs/pharmacodynamics of the BTK inhibitor BGB-3111 in Chinese patients with B-cell lymphoma	Part 1: W1D1: Predose, 0.5, 1, 2, 3, 4, 8, 12, 24 hours (W1D2 predose) W2D1: Predose, 0.5, 1, 2, 3, 4, 8 hours W5D1 and W9D1: Predose Part 2: W1D1: Predose, 0.5, 1, 2, 3, 4, 6, 8, 12 24 hours (W1D2 predose) W2D1: Predose, 0.5, 1, 2, 3, 4, 6, 8, 12 hours W5D1 and W9D1: Predose
BGB-3111-205 (NCT03206918)	160 mg b.i.d.	13	A single-arm, open-label, multicenter phase II study to evaluate safety and efficacy of BGB-3111, a BTK inhibitor in relapsed or refractory CLL/SLL	C1D1: Predose, 2, 4–6 hours C2D1: Predose, 2, 4–6 hours
BGB-3111-206 (NCT03206970)	160 mg b.i.d.	20	A single-arm, open-label, multicenter phase II study to evaluate the efficacy and safety of BGB-3111, a BTK inhibitor, in patients with relapsed or refractory MCL	C1D1: Predose, 2, 4–6 hours C2D1: Predose, 2, 4–6 hours
BGB-3111-103 (NCT04163523)	320 mg q.d.	18	A single-center, phase I, open-label, randomized, crossover study to evaluate the effect of food on the PKs of a single dose of 320 mg BGB-3111 given orally to healthy adult subjects	Predose, 0.5, 1, 2, 3, 4, 6, 8, 12, 24 hour (under each of high-fat, low-fat, and fasted conditions)
BGB-3111-104 (NCT03301181)	20 mg q.d. 320 mg q.d.	38	A phase I, open-label, parallel-group, fixed-sequence study to investigate the effect of the CYP3A inducer rifampin and the CYP3A inhibitor itraconazole on the PKs of BGB-3111 in healthy subjects	Part A: D1 and D10: Predose, 1, 1.5, 2, 3 4, 6, 8, 12, 24, 36, 48 hours Part B: D1 and D6: Predose, 1, 1.5, 2, 3, 4, 6, 8, 12, 24, 36, 48 hours
BGB-3111-105 (NCT04163783)	320 mg q.d.	6	A phase I study to investigate the absorption, metabolism, and excretion of [14C] BGB-3111 following a single oral administration in healthy male subjects	Predose, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 24, 48, 72, 96, 120, 144 hours
BGB-3111-106 (NCT03432884)	160 mg q.d. 480 mg q.d.	28	A two-part study consisting of a randomized, placebo- controlled, single dose safety and tolerability study (part A) evaluating a supratherapeutic dose of zanubrutinib followed by a randomized, placebo and positive-controlled, crossover study (part B) to evaluate the effect of zanubrutinib on cardiac repolarization in HVs	Predose, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 6, 8 12, 24, 36, 48 hours
BGB-3111-302 (NCT03053440)	160 mg b.i.d.	128	A study comparing BGB-3111 and ibrutinib in subjects with WM	C1D1: Predose 2, 3–6 hours C2D1: Predose 2, 3–6 hours

Population pharmacokinetic analysis of the BTK inhibitor zanubrutinib in healthy volunteers and patients with B-cell malignancies

No statistically significant differences in the PK of zanubrutinib were observed based on age, sex, race (Asian, Caucasian, and other), body weight, mild or moderate renal impairment (creatinine clearance ≥30 mL/min as estimated by Cockcroft-Gault), baseline aspartate aminotransferase, bilirubin, tumor type, or use of acid-reducing agents (including proton pump inhibitors)

Population pharmacokinetic analysis of the BTK inhibitor zanubrutinib in healthy volunteers and patients with B-cell malignancies

- No statistically significant differences in the PK of zanubrutinib were observed based on age, sex, race (Asian, Caucasian, and other), body weight, mild or moderate renal impairment (creatinine clearance ≥30 mL/min as estimated by Cockcroft-Gault), baseline aspartate aminotransferase, bilirubin, tumor type, or use of acid-reducing agents (including proton pump inhibitors)
- These results support that no dose adjustment is considered necessary based on the aforementioned factors

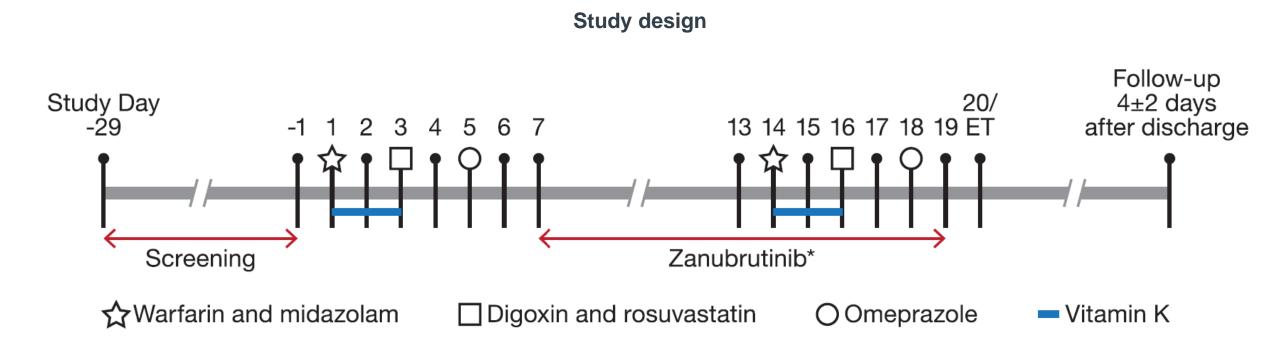
Alternative names	BGB-3111, zanubrutinib
Class	Amides, Actineoplastics, Phenyl ethers, Piperidines, Pyrazoles, Pyrimidines, Small molecules
Mechanism of action	Bruton's tyrosine kinase inhibitor
Route of Administration	Oral
Pharmacodynamics	Highly selective for BTK; inhibits BTK with potency similar to ibrutinib; less off-target kinase inhibition than ibrutinib; associated with near complete and sustained BTK occupancy in PBMCs as well as lymph nodes
Pharmacokinetics	Median time to C _{max} ≈2 h; minimal accumulation; volume of distribution at steady state 881 L; mean half-life ≈2–4 h

Alternative names	BGB-3111, zanubrutinib
Class	Amides, Actineoplastics, Phenyl ethers, Piperidines, Pyrazoles, Pyrimidines, Small molecules
Mechanism of action	Bruton's tyrosine kinase inhibitor
Route of Administration	Oral
Pharmacodynamics	Highly selective for BTK; inhibits BTK with potency similar to ibrutinib; less off-target kinase inhibition than ibrutinib; associated with near complete and sustained BTK occupancy in PBMCs as well as lymph nodes
Pharmacokinetics	Median time to C _{max} ≈2 h; minimal accumulation; volume of distribution at steady state 881 L; mean half-life ≈2–4 h; primarily metabolized by CYP3A

Clinical implications and management

 All three BTK inhibitors have potential drug–drug interactions with agents that are metabolized via the CYP3A pathway

Clinical implications and management

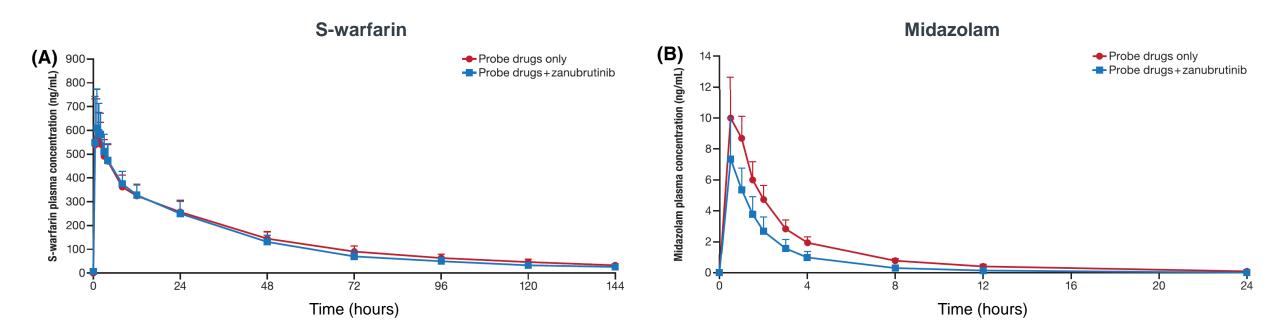

- All three BTK inhibitors have potential drug–drug interactions with agents that are metabolized via the CYP3A pathway
- Co-administration of strong inducers of CYP3A and any of the BTK inhibitors should be avoided, but should the combination be necessary, the labeling of acalabrutinb makes recommendations for dosage adjustment, while the labeling of ibrutinib and zanubrutinib do not

Clinical implications and management

- All three BTK inhibitors have potential drug–drug interactions with agents that are metabolized via the CYP3A pathway
- Co-administration of strong inducers of CYP3A and any of the BTK inhibitors should be avoided, but should the combination be necessary, the labeling of acalabrutinb makes recommendations for dosage adjustment, while the labeling of ibrutinib and zanubrutinib do not
- Recommendations for co-administration with inhibitors of CYP3A vary among the agents; most notably, co-administration of ibrutinib and zanubrutinib with azole antifungals warrants dosage adjustment, while acalabrutinib does not

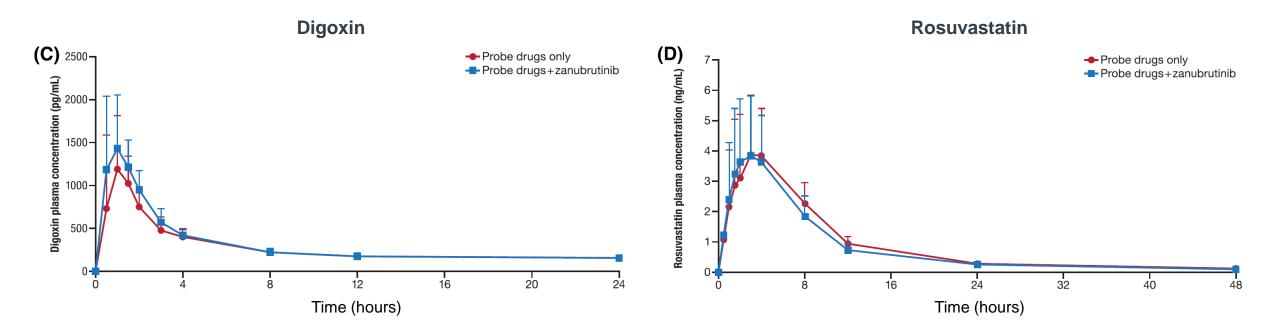
Clinical implications and management

- All three BTK inhibitors have potential drug–drug interactions with agents that are metabolized via the CYP3A pathway
- Co-administration of strong inducers of CYP3A and any of the BTK inhibitors should be avoided, but should the combination be necessary, the labeling of acalabrutinb makes recommendations for dosage adjustment, while the labeling of ibrutinib and zanubrutinib do not
- Recommendations for co-administration with inhibitors of CYP3A vary among the agents; most notably, co-administration of ibrutinib and zanubrutinib with azole antifungals warrants dosage adjustment, while acalabrutinib does not
- Conversely, concomitant use of acalabrutinib with gastric acid-reducing agents may present challenges in clinical practice, especially when the widespread use and availability of such products are considered

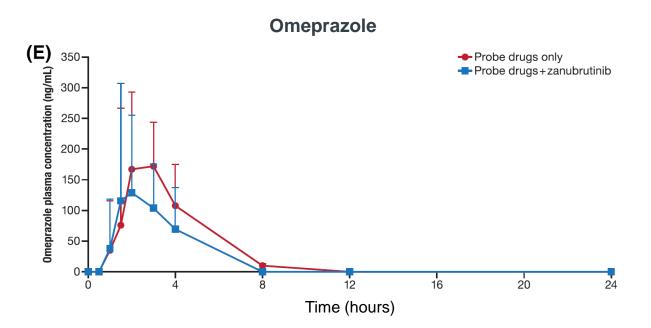

*PK samples for zanubrutinib were collected on Day 13 and Day 18. BCRP, breast cancer resistance protein; CYP, cytochrome P450; ET, end of study; P-GP, P-glycoprotein. Ou YC *et al. Br J Clin Pharmacol* 2021; 87 (7): 2926–2936.

Investigational product administration and blood sampling times

Investigational product	Dose	CYPs/transporters of interest	Blood sampling time
Zanubrutinib	320 mg daily (160 mg b.i.d.)	Not applicable	Predose and 0.5, 1, 2, 3, 4, 6, 8, and 12 h postdose (Day 13 and Day 18)
Midazolam	2 mg	СҮРЗА	Predose and 0.5, 1, 1.5, 2, 3, 4, 8, 12, and 24 h postdose (Days 1–2, Days 14–15)
Warfarin	10 mg	CYP2C9 (for S-warfarin)	Predose and 0.5, 1, 1.5, 2, 3, 4, 8, 12, 24, 48, 72, 96, 120, and 144 h postdose (Days 1–7, Days 14–20)
Vitamin K	10 mg	Not applicable	NA
Omeprazole	20 mg	CYP2C19	Predose and 0.5, 1, 1.5, 2, 3, 4, 8, 12, and 24 h postdose (Days 5–6, Days 18–19)
Digoxin	0.25 mg	P-gp	Predose and 0.5, 1, 1.5, 2, 3, 4, 8, 12, and 24 h postdose (Days 3–4, Days 16–17)
Rosuvastatin	10 mg	OATP1B1, OATP1B3, BCRP	Predose and 0.5, 1, 1.5, 2, 3, 4, 8, 12, 24, and 48 h postdose (Days 3–4, Days 16–17)


BCRP, breast cancer resistance protein; BID, twice a day; CYP, cytochrome P450; NA, not applicable; OATP, organic anion-transporting polypeptide; P-GP, P-glycoprotein; PK, pharmacokinetic. Ou YC *et al. Br J Clin Pharmacol* 2021; 87 (7): 2926–2936.

Pharmacokinetic profile of probe drugs administered alone and with zanubrutinib 160 mg B.I.D.


BCRP, breast cancer resistance protein; BID, twice a day; CYP, cytochrome P450; P-GP, P-glycoprotein. Ou YC *et al. Br J Clin Pharmacol* 2021; 87 (7): 2926–2936.

Pharmacokinetic profile of probe drugs administered alone and with zanubrutinib 160 mg B.I.D.

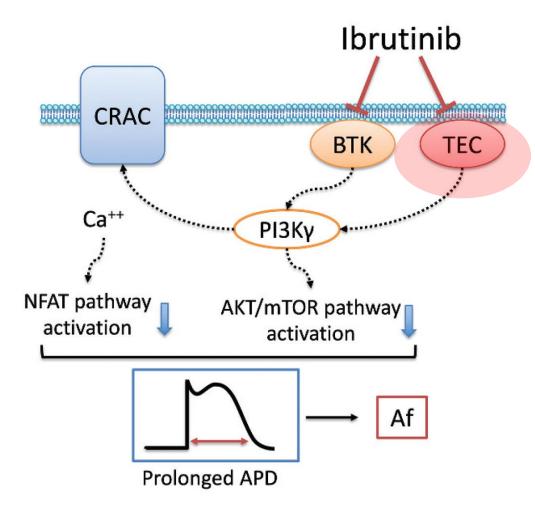
BCRP, breast cancer resistance protein; BID, twice a day; CYP, cytochrome P450; P-GP, P-glycoprotein. Ou YC *et al. Br J Clin Pharmacol* 2021; 87 (7): 2926–2936.

Pharmacokinetic profile of probe drugs administered alone and with zanubrutinib 160 mg B.I.D.

BCRP, breast cancer resistance protein; BID, twice a day; CYP, cytochrome P450; P-GP, P-glycoprotein. Ou YC *et al. Br J Clin Pharmacol* 2021; 87 (7): 2926–2936.

Summary plot of the effect of zanubrutinib on the pharmacokinetic parameters of probe drugs

 AUC_{0-t} , area under the concentration-time curve from time zero to the last quantifiable concentration; BCRP, breast cancer resistance protein; BID, twice a day; CI, confidence interval; C_{max} , maximum observed concentration; CYP, cytochrome P450; GLSM, geometric least squares mean; P-GP, P-glycoprotein. Ou YC *et al. Br J Clin Pharmacol* 2021; 87 (7): 2926–2936.


Evaluation of drug interaction potential of zanubrutinib with cocktail probes representative of CYP3A4, CYP2C9, CYP2C19, P-GP AND BCRP

 At clinically relevant concentrations, zanubrutinib did not impact the activity of CYP2C9 and BCRP, but it had a weak induction effect on CYP3A and CYP2C19.

Rates of serious adverse events

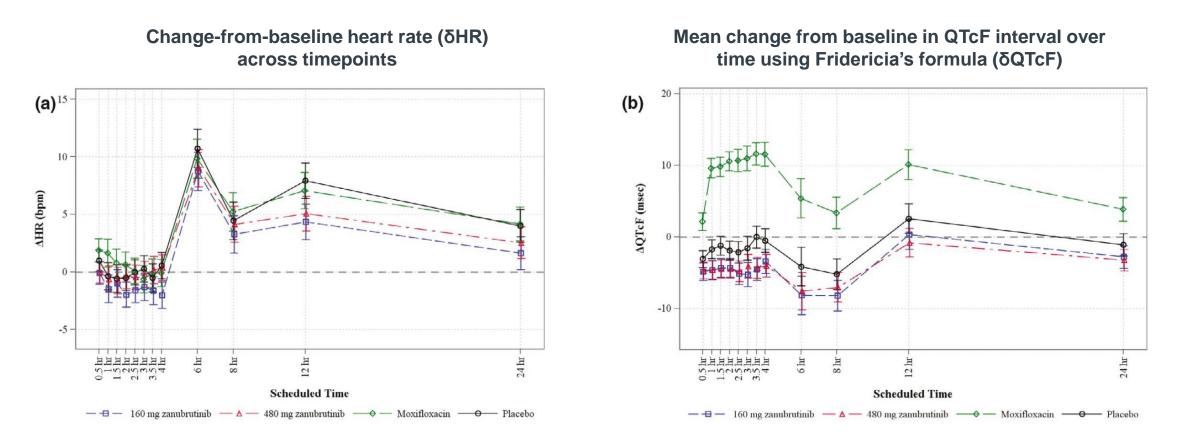
	Grade ≥ 3			All Grades	
	AU003	ASPEN		ASPEN	
	Zanubrutinib	Zanubrutinib	lbrutinib	Zanubrutinib	lbrutinib
Atrial Fibrillation/Flutter	1%	0%	4%	2%	15%
Diarrhea	3%	3%	1%	21%	31%
Hemorrhage	4%	6%	8%	49%	58%
Hypertension	4%	6%	12%	11%	17%
Infection	27%	18%	19%	67%	66%
Neutropenia	16%	20%	8%	30%	13%
Secondary Malignancy		2%	1%	12%	11%

Possible mechanism of potential ibrutinib-associated atrial fibrillation

No QTc prolongation with zanubrutinib

Results of concentration-QTc analysis from a thorough QT study in healthy subjects

Summary of zanubrutinib PK parameters in healthy TQT study participants

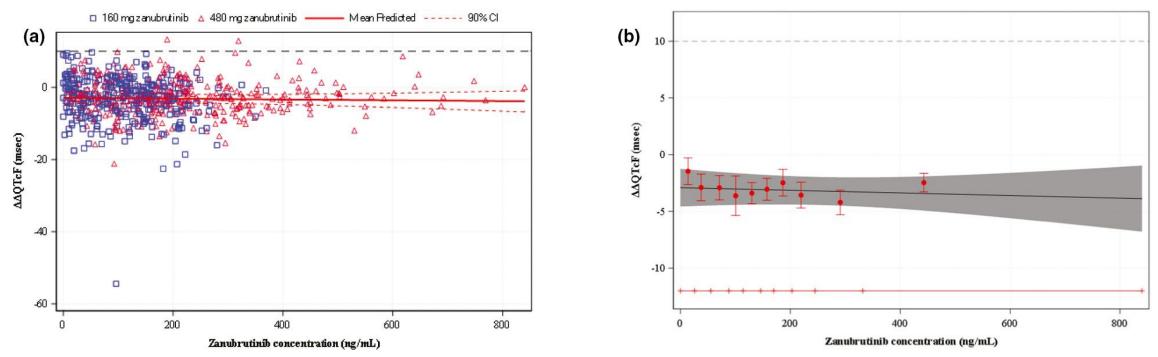

		Zanubrutinib dose	
	Part A	Ра	rt B
Parameter	480 mg (<i>n</i> = 6)	160 mg (<i>n</i> = 28)	480 mg (<i>n</i> = 30)
T _{max} , median (min, max), hour	2.8 (1.0, 3.5)	1.5 (1.0, 6.0)	2.0 (0.5, 6.0)
C _{max.} mean (CV%), ng/mL	353 (33.5)	216 (24.2)	406 (30.7)
AUC _{0-t.} mean (CV%), hour × ng/mL	2,570 (36.2)	1,160 (25.1)	2,770 (28.9)
$AUC_{0-\infty}$ mean (CV%), hour × ng/mL	2,670 (39.1)	1,230 (23.5)	3,060 (25.9)
$t_{\frac{1}{2}}$, mean (CV%), hour	11 (50)	5.3 (47)	8.1 (68)
CL/F mean (CV%), L/hour	180 (39.2)	126 (29.0)	140 <mark>(</mark> 38.8)
, V _z /F mean (CV%), L	2,840 (41.0)	966 (36.7)	1,630 (55.8)

AUC_{0-t}, area under the concentration-time curve from time zero to the last quantifiable concentration; AUC_{0- ∞}, area under the concentration-time curve from time zero extrapolated to infinity; CL/F, apparent systemic clearance; C_{max}, maximum observed concentration; CV, coefficient of variation; PK, pharmacokinetic; t_{1/2}, apparent terminal elimination half-life; T_{max}, time maximum observed concentration; TQT, thorough QT; V₂/F, apparent volume of distribution during the terminal elimination phase. Mu S *et al. Clin Transl Sci* 20 20; 13 (5): 923–931.

No QTc prolongation with zanubrutinib

Results of concentration-QTc analysis from a thorough QT study in healthy subjects

Effects of zanubrutinib on ECG parameters

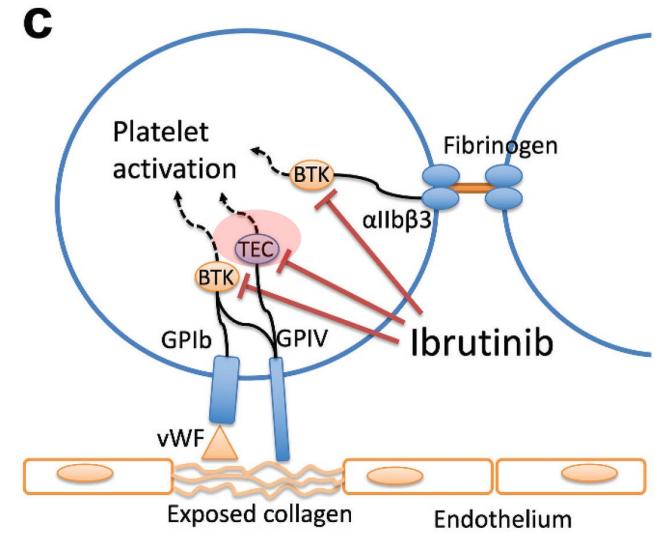

ECG, electrocardiogram; HR, heart rate; QTcF, corrected QT interval by Fridericia. Mu S *et al. Clin Transl Sci* 2020; 13 (5): 923–931.

No QTc prolongation with zanubrutinib

Results of concentration-QTc analysis from a thorough QT study in healthy subjects

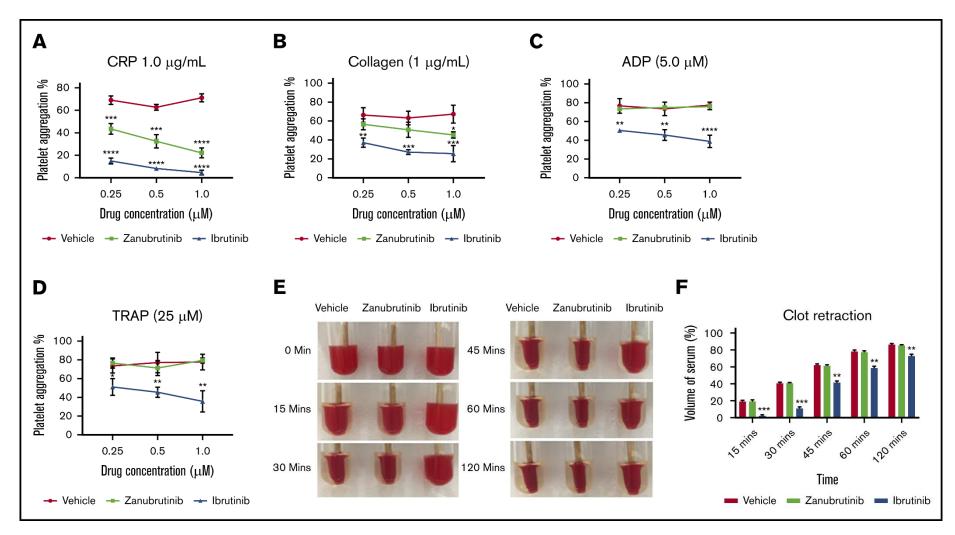
Zanubrutinib concentration-QTc analysis

Scatter plot of observed zanubrutinib plasma concentrations and mean change from baseline in QTcF interval over time using Fridericia's formula (ΔΔQTcF) Mean (90% confidence interval (CI)) modelpredicted and observed $\Delta\Delta$ QTcF across deciles of zanubrutinib plasma concentrations)*

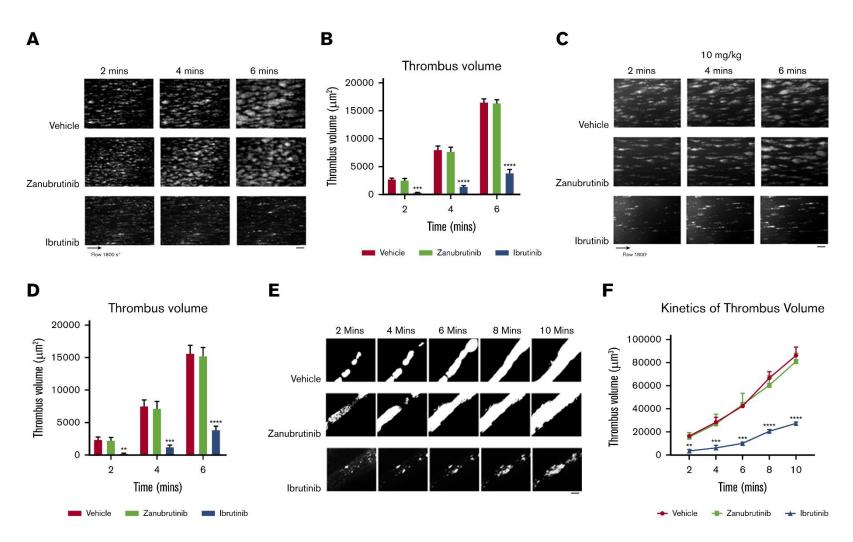


*The red dots with vertical bars denote the observed mean (90% CI) ΔΔQTcF at the median zanubrutinib plasma concentration within each decile. The solid black line within the gray shaded area denotes the model-predicted mean (90% CI) ΔΔQTcF. The horizontal red line with notches shows the range of concentrations divided into deciles for zanubrutinib. The area between each decile represents the point at which 10% of the data are present; the first notch to second notch denotes the first 10% of the data, the second notch denotes the second 10%, and so on. QTcF, corrected QT interval by Fridericia. Mu S *et al. Clin Transl Sci* 2020; 13 (5): 923–931.

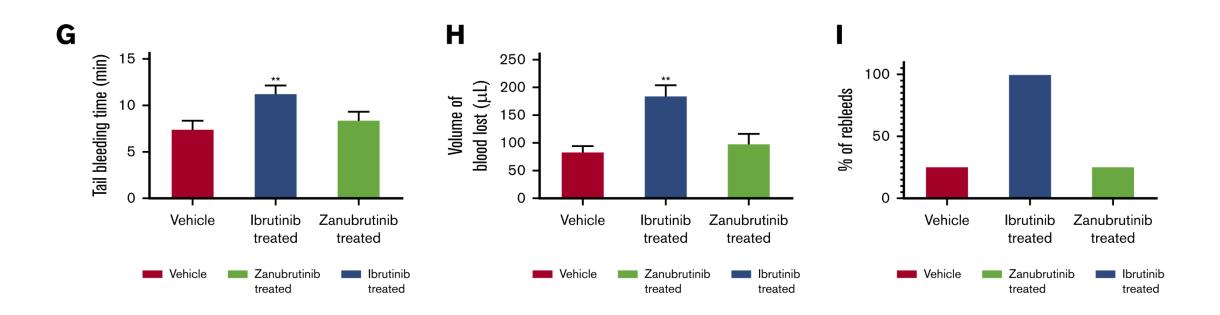
Rates of serious adverse events


	Grade ≥ 3			All Grades	
	AU003	ASPEN		ASPEN	
	Zanubrutinib	Zanubrutinib	lbrutinib	Zanubrutinib	lbrutinib
Atrial Fibrillation/Flutter	1%	0%	4%	2%	15%
Diarrhea	3%	3%	1%	21%	31%
Hemorrhage	4%	6%	8%	49%	58%
Hypertension	4%	6%	12%	11%	17%
Infection	27%	18%	19%	67%	66%
Neutropenia	16%	20%	8%	30%	13%
Secondary Malignancy		2%	1%	12%	11%

Possible mechanism of potential ibrutinib-associated bleeding


BTK, Bruton's tyrosine kinase. Makita S *et al. Expert Opin Drug Saf* 2020; 19 (9): 1105–1120.

The effect of BTK inhibitors on agonist-induced platelet aggregation and clot retraction *in vitro*



ADP, Adenosine diphosphate, BTK, Bruton's tyrosine kinase; CRP, C-reactive protein; TRAP, thrombin receptor activating peptide. Dobie G *et al. Blood Adv* 2019; 3 (24): 4298–4311.

The effect of ibrutinib and zanubrutinib on *in vitro*, *ex vivo*, and *in vivo* thrombus formation and tail bleeding time

The effect of ibrutinib and zanubrutinib on *in vitro*, *ex vivo*, and *in vivo* thrombus formation and tail bleeding time

Rates of serious adverse events

	Grade ≥ 3			All Grades	
	AU003	ASPEN		ASPEN	
	Zanubrutinib	Zanubrutinib	lbrutinib	Zanubrutinib	lbrutinib
Atrial Fibrillation/Flutter	1%	0%	4%	2%	15%
Diarrhea	3%	3%	1%	21%	31%
Hemorrhage	4%	6%	8%	49%	58%
Hypertension	4%	6%	12%	11%	17%
Infection	27%	18%	19%	67%	66%
Neutropenia	16%	20%	8%	30%	13%
Secondary Malignancy		2%	1%	12%	11%

Conclusions Makita S *et al. Expert Opin Drug Saf* 2020

Makita S et al. Expert Opin Drug Saf 2020

 The BTK inhibitor is an important game-changer in B-cell lymphoma management, especially in B-CLL/SLL

- The BTK inhibitor is an important game-changer in B-cell lymphoma management, especially in B-CLL/SLL
- Although ibrutinib, the first-in-class BTK inhibitor, is generally well tolerated compared with conventional cytotoxic chemotherapies, several toxicities including atrial fibrillation, bleeding, and infection were reported

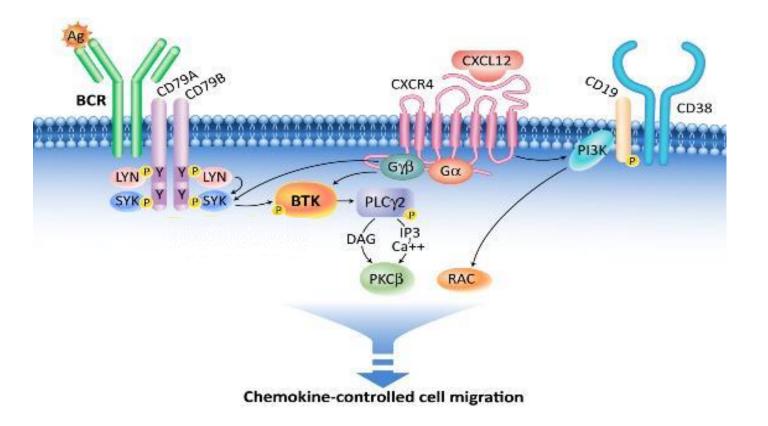
- The BTK inhibitor is an important game-changer in B-cell lymphoma management, especially in B-CLL/SLL
- Although ibrutinib, the first-in-class BTK inhibitor, is generally well tolerated compared with conventional cytotoxic chemotherapies, several toxicities including atrial fibrillation, bleeding, and infection were reported
- The actual mechanisms of these toxicities remain unclear

- The BTK inhibitor is an important game-changer in B-cell lymphoma management, especially in B-CLL/SLL
- Although ibrutinib, the first-in-class BTK inhibitor, is generally well tolerated compared with conventional cytotoxic chemotherapies, several toxicities including atrial fibrillation, bleeding, and infection were reported
- The actual mechanisms of these toxicities remain unclear
- However, recently reported data from second-generation BTK inhibitors (e.g., acalabrutinib and zanubrutinib) suggest that the ibrutinib-associated toxicities may not be class effects, but are mainly caused by off-target effects of ibrutinib

- The BTK inhibitor is an important game-changer in B-cell lymphoma management, especially in B-CLL/SLL
- Although ibrutinib, the first-in-class BTK inhibitor, is generally well tolerated compared with conventional cytotoxic chemotherapies, several toxicities including atrial fibrillation, bleeding, and infection were reported
- The actual mechanisms of these toxicities remain unclear
- However, recently reported data from second-generation BTK inhibitors (e.g., acalabrutinib and zanubrutinib) suggest that the ibrutinib-associated toxicities may not be class effects, but are mainly caused by off-target effects of ibrutinib
- And these toxicities may be overcome with more specific second-generation BTK inhibitors

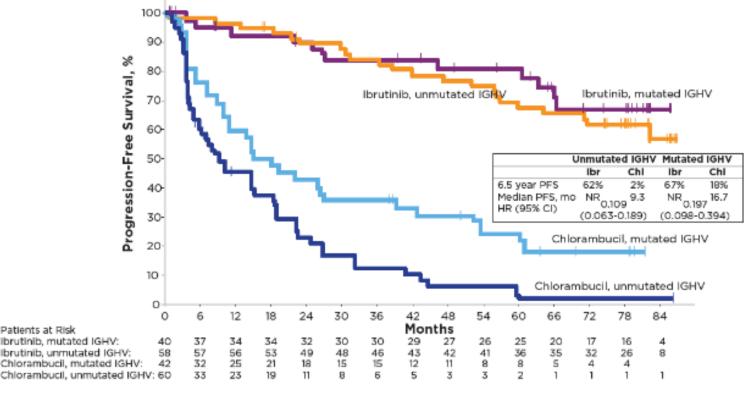
- The BTK inhibitor is an important game-changer in B-cell lymphoma management, especially in B-CLL/SLL
- Although ibrutinib, the first-in-class BTK inhibitor, is generally well tolerated compared with conventional cytotoxic chemotherapies, several toxicities including atrial fibrillation, bleeding, and infection were reported
- The actual mechanisms of these toxicities remain unclear
- However, recently reported data from second-generation BTK inhibitors (e.g., acalabrutinib and zanubrutinib) suggest that the ibrutinib-associated toxicities may not be class effects, but are mainly caused by off-target effects of ibrutinib
- And these toxicities may be overcome with more specific second-generation BTK inhibitors
- We currently prefer to utilize second-generation BTK inhibitors among patients with comorbidities such as histories of heart disease and/or concomitant use of anticoagulants

Next-generation BTK inhibitor monotherapy vs. ibrutinib in the treatment of relapsed/refractory CLL/SLL


Professor Paolo Ghia Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Italy

Disclosures

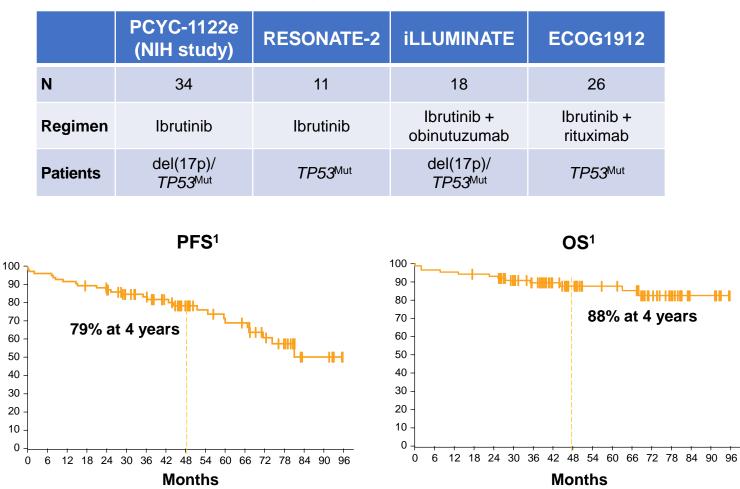
Research support / P.I.	AbbVie, AstraZeneca, Gilead, Janssen, Novartis, Sunesis
Employee	NA
Consultant	AbbVie, AstraZeneca, ArQule/MSD, BeiGene, Celgene/Juno/BMS, Janssen, Loxo/Lilly, Roche
Major stockholder	NA
Speakers bureau	NA
Honoraria	AbbVie, AstraZeneca, ArQule/MSD, BeiGene, Celgene/Juno/BMS, Janssen, Loxo/Lilly, Roche
Scientific advisory board	AbbVie, AstraZeneca, ArQule/MSD, BeiGene, Celgene/Juno/BMS, Janssen, Loxo/Lilly, Roche


Chemotherapy-free treatments for B-cell malignancies

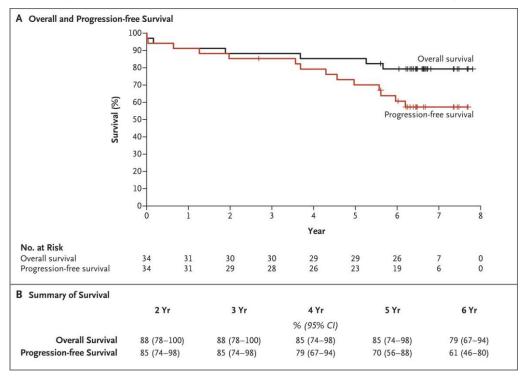
- BTK is an essential element of the BCR signaling pathway
- Inhibitors of BTK block BCR signaling and induce apoptosis
- BTK also acts downstream of certain chemokine receptors, impacting integrin molecules that help in promoting egression from the lymph node environment

Phase III study RESONATE-2: First-line ibrutinib vs. chlorambucil Up to 7 years follow-up

- PFS and OS benefits across all patient subgroups with ibrutinib
 - Overall PFS: 61%
 - Overall OS: 78%
- Sustained and deepening responses
 CR/CRi: 34%
 - Only 16 patients (12%) progressed while receiving ibrutinib
- ~50% of patients remained on therapy; dose adjustments managed most AEs
 - $_{\circ}$ Specific AEs of concern with ibrutinib
 - Atrial fibrillation
 - Hypertension
 - Hemorrhage



PFS: Ibrutinib vs. chlorambucil by IGHV status


AE, adverse event; CR, complete response; CRi, complete response with incomplete bone marrow recovery; OS, overall survival; PFS, progression-free survival. Ghia *et al.* 26th Annual Congress of the European Hematology Association (EHA) 2021 (virtual); June 10–13, 2021.

Long-term efficacy of first-line ibrutinib CLL with TP53 aberrations

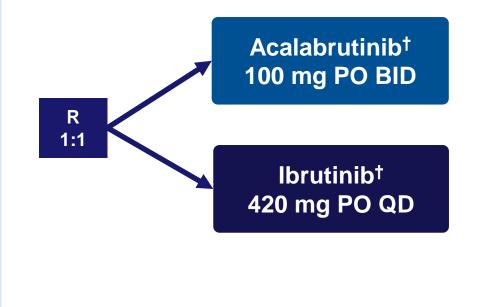
Pooled analysis: 4-year follow-up¹

6-year follow-up of the NIH phase 2 study²

CI, confidence interval; CLL, chronic lymphocytic leukemia; Mut, mutated; NIH, National Institutes of Health; OS, overall survival; PFS, progression-free survival; Yr, year.

1. Allan JN *et al.* Abstract 2219 presented at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition 2020 (virtual); December 5–8, 2020. 2. Ahn IE *et al.* N Engl J Med 2020; 383 (5): 498–500. 60

Phase III study ELEVATE-RR


Acalabrutinib vs. ibrutinib in high-risk R/R CLL

Patients (N=533) Key inclusion criteria

- Adults with previously treated CLL requiring therapy (iwCLL 2008 criteria)
- Presence of del(17p) or del(11q)*
- ECOG PS ≤2

Stratification

- del(17p) status (yes or no)
- ECOG PS (2 vs. ≤1)
- Number of prior therapies (1–3 vs. ≥4)

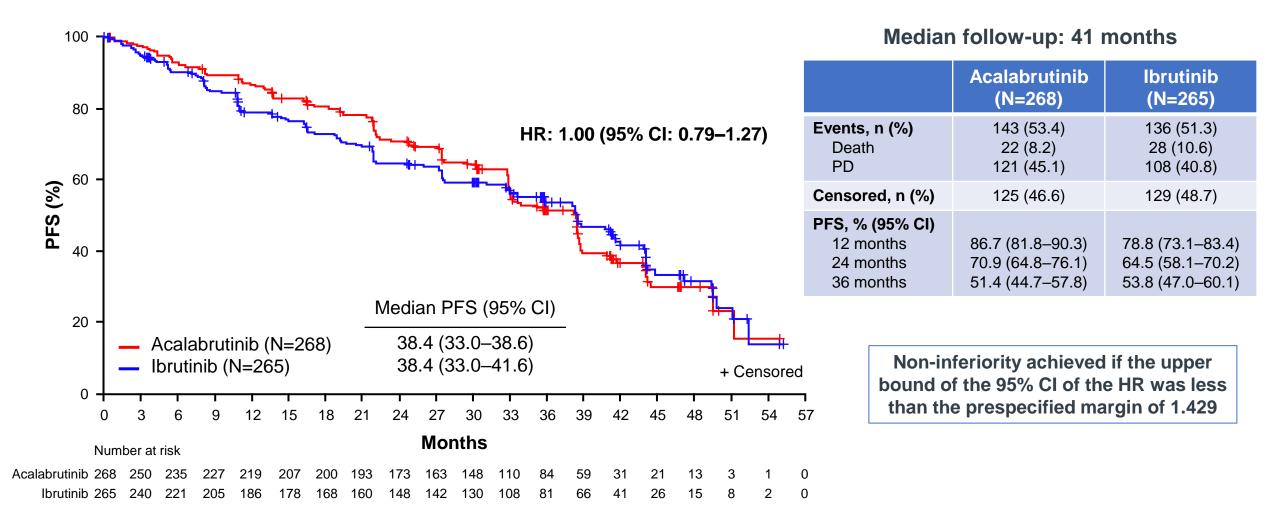
Primary endpoint

 Non-inferiority on IRC-assessed PFS[‡]

Secondary endpoints (hierarchical order):

- Incidence of any grade
 atrial fibrillation/flutter
- Incidence of Grade ≥3 infection
- Incidence of Richter transformation
- OS

Key exclusion criteria: Significant CV disease; concomitant treatment with warfarin or equivalent vitamin K antagonist; prior treatment with ibrutinib, a BCR inhibitor (e.g. BTK, PI3K, or Syk inhibitors), or a BCL-2 inhibitor (e.g. venetoclax)


*By central laboratory testing. †Continued until disease progression or unacceptable toxicity. ‡Conducted after enrollment completion and accrual of ~250 IRC-assessed PFS events.

BCL, B-cell lymphoma; BCR, B-cell receptor; BID, twice a day; CLL, chronic lymphocytic leukemia; CV, cardiovascular; ECOG PS, Eastern Cooperative Oncology Group Performance Status;

ClinicalTrials.gov NCT02477696. Available at: https://clinicaltrials.gov/ct2/show/NCT02477696. Accessed September 2021. Byrd JC et al. J Clin Oncol 2021; Epub ahead of print (DOI: 10.1200/JCO.21.01210).

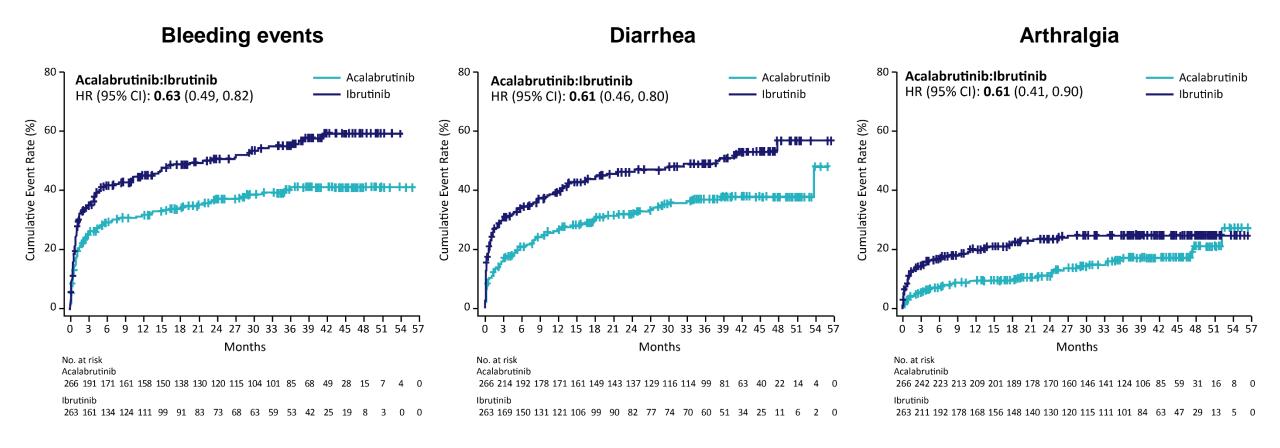
IRC, independent review committee; iwCLL, International Workshop on Chronic Lymphocytic Leukemia; OS, overall survival; PFS, progression-free survival; PI3K, phosphatidylinositol 3-kinase; PO, by mouth; Syk, spleen tyrosine kinase; QD, once a day; R, randomization; R/R, relapsed/refractory.

ELEVATE-RR: Acalabrutinib vs. ibrutinib in high-risk R/R CLL IRC-assessed PFS

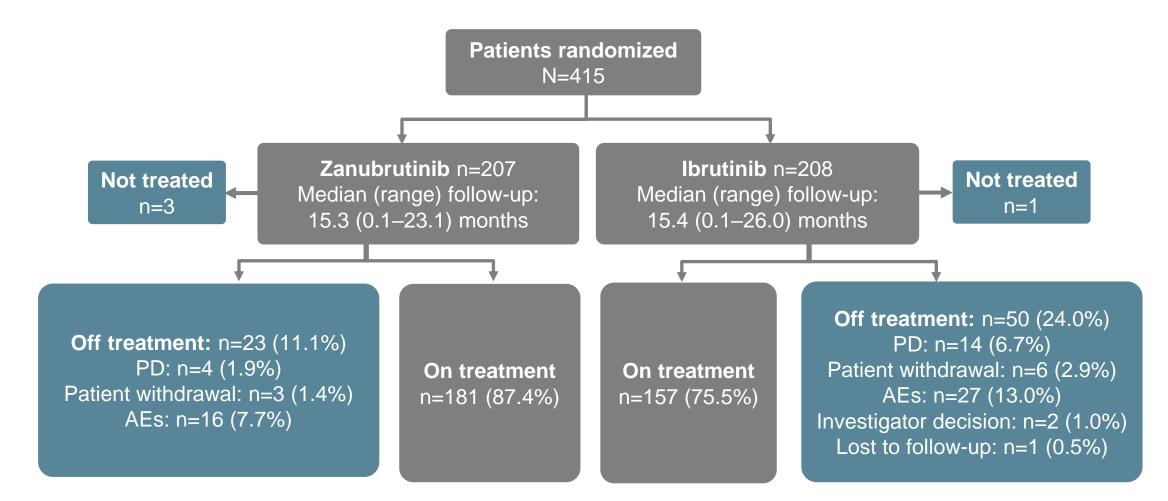
CI, confidence interval; CLL, chronic lymphocytic leukemia; HR, hazard ratio; IRC, independent review committee; PD, progressive disease; PFS, progression-free survival; R/R, relapsed/refractory. Byrd JC et al. J Clin Oncol 2021; Epub ahead of print (DOI: 10.1200/JCO.21.01210). Byrd JC et al. J Clin Oncol 2021; 39 (15): 7500–7500.

Events of clinical interest

	Any g	jrade	Grade ≥3	
Event, n (%)	Acalabrutinib (n=266)	lbrutinib (n=263)	Acalabrutinib (n=266)	lbrutinib (n=263)
Cardiac events	64 (24.1)	79 (30.0)	23 (8.6)	25 (9.5)
Atrial fibrillation ^{a*}	25 (9.4)	42 (16.0)	13 (4.9)	10 (3.8)
Ventricular arrhythmias ^b	0	3 (1.1)	0	1 (0.4)
Bleeding events*	101 (38.0)	135 (51.3)	10 (3.8)	12 (4.6)
Major bleeding events ^c	12 (4.5)	14 (5.3)	10 (3.8)	12 (4.6)
Hypertension ^{d*}	25 (9.4)	61 (23.2)	11 (4.1)	24 (9.1)
Infections ^e	208 (78.2)	214 (81.4)	82 (30.8)	79 (30.0)
ILD/pneumonitis*	7 (2.6)	17 (6.5)	1 (0.4)	2 (0.8)
SPMs excluding NMSC	24 (9.0)	20 (7.6)	16 (6.0)	14 (5.3)


Higher incidence indicated in bold red for terms with statistical differences.

*Two-sided *P*-value for event comparisons <0.05 without multiplicity adjustment. ^aIncludes events with preferred terms: atrial fibrillation and atrial flutter. ^bIncludes events with preferred terms: torsade de pointes, ventricular arrhythmia, ventricular extrasystoles, ventricular fibrillation, ventricular flutter, ventricular tachyarrhythmia, and ventricular tachycardia. ^cDefined as any hemorrhagic event that was serious, Grade \geq 3 in severity, or a central nervous system hemorrhage (any severity grade). ^dIncluded events with the preferred terms: hypertension, blood pressure increased, and blood pressure systolic increased. ^eMost common Grade \geq 3 infections were pneumonia (acalabrutinib, 10.5%; ibrutinib, 8.7%), sepsis (1.5% vs. 2.7%, respectively), and UTI (1.1% vs. 2.3%, respectively).


ILD, interstitial lung disease; NMSC, nonmelanoma skin cancer; SPM, second primary malignancy; UTI, urinary tract infection.

Ghia P et al. Oral presentation JSH 2021.

Lower cumulative incidences of bleeding events, diarrhea, and arthralgia of any grade with acalabrutinib

Phase III study ALPINE: Ibrutinib vs. zanubrutinib in R/R CLL

ORR by investigator assessment

Pre-specified interim analysis

	Zanubrutinib (n=207), n (%)	lbrutinib (n=208), n (%)			
Primary endpoint: ORR (PR + CR)	162 (78.3) 95% CI: 72.0–83.7	130 (62.5) 95% CI: 55.5–69.1			
	Superiority two-sided P=0.0006 compared with prespecified alpha of 0.0099				
CR/CRi	4 (1.9)	3 (1.4)			
nPR	1 (0.5)	0			
PR	157 (75.8)	127 (61.1)			

CI, confidence interval; CR, complete response; CRi, complete response with incomplete bone marrow recovery; nPR, nodular partial response; ORR, overall response rate; PD, progressive disease; PR, partial response; PR-L, partial response with lymphocytosis; SD, stable disease. Hillmen P *et al.* Abstract LB1900 presented at the 26th Annual Congress of the European Hematology Association (EHA) 2021 (virtual); June 10–13, 2021.

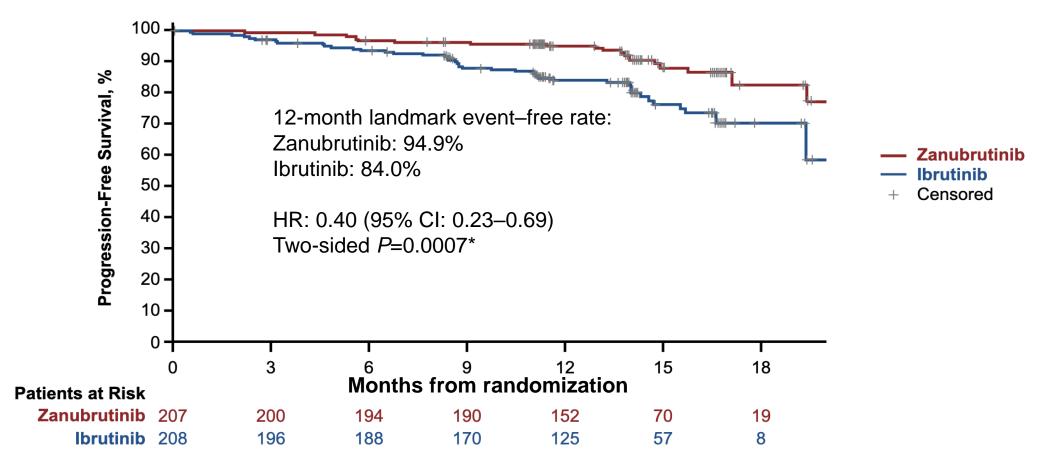
ORR by investigator assessment

Pre-specified interim analysis

	Zanubrutinib (n=207), n (%)	lbrutinib (n=208), n (%)
Primary endpoint: ORR (PR + CR)	162 (78.3) 95% CI: 72.0–83.7	130 (62.5) 95% CI: 55.5–69.1
	Superiority two-sided P=0.0006 compared with prespecified alpha of 0.00	
CR/CRi	4 (1.9)	3 (1.4)
nPR	1 (0.5)	0
PR	157 (75.8)	127 (61.1)
ORR (PR-L+PR+CR)	183 (88.4)	169 (81.3)
PR-L	21 (10.1)	39 (18.8)
SD	17 (8.2)	28 (13.5)
PD	1 (0.5)	2 (1.0)
Discontinued or new therapy prior to first assessment	6 (2.9)	9 (4.3)

CI, confidence interval; CR, complete response; CRi, complete response with incomplete bone marrow recovery; nPR, nodular partial response; ORR, overall response rate; PD, progressive disease; PR, partial response; PR-L, partial response with lymphocytosis; SD, stable disease. Hillmen P *et al.* Abstract LB1900 presented at the 26th Annual Congress of the European Hematology Association (EHA) 2021 (virtual); June 10–13, 2021.

ORR by investigator assessment

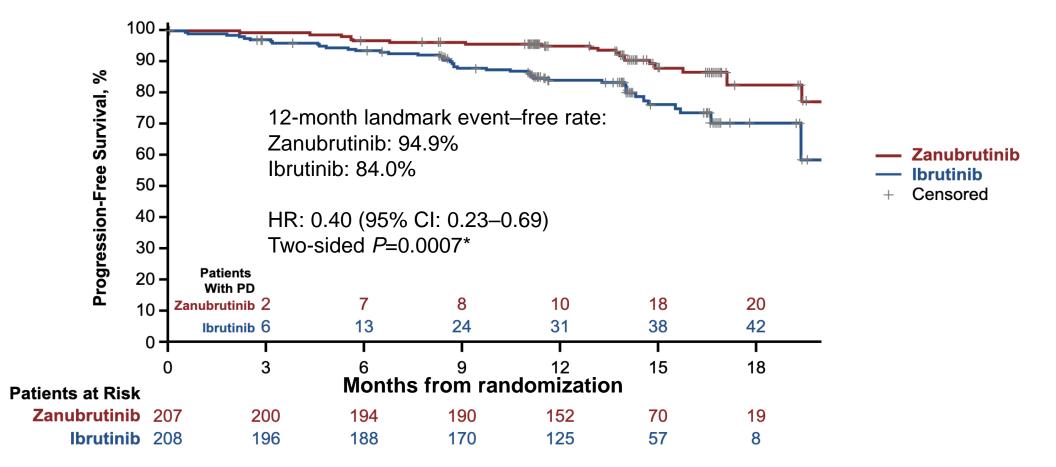

Pre-specified interim analysis

	Zanubrutinib (n=207), n (%)	lbrutinib (n=208), n (%)
Primary endpoint: ORR (PR + CR)	162 (78.3) 95% CI: 72.0–83.7	130 (62.5) 95% CI: 55.5–69.1
	Superiority two-sided P=0.0006 compa	ared with prespecified alpha of 0.0099
CR/CRi	4 (1.9)	3 (1.4)
nPR	1 (0.5)	0
PR	157 (75.8)	127 (61.1)
ORR (PR-L+PR+CR)	183 (88.4)	169 (81.3)
PR-L	21 (10.1)	39 (18.8)
SD	17 (8.2)	28 (13.5)
PD	1 (0.5)	2 (1.0)
Discontinued or new therapy prior to first assessment	6 (2.9)	9 (4.3)

	del(17p) (n=24), n (%)	del(17p) (n=26), n (%)
ORR (PR + CR)	20 (83.3)	14 (53.8)

CI, confidence interval; CR, complete response; nPR, nodular partial response; ORR, overall response rate; PD, progressive disease; PR, partial response; PR-L, partial response with lymphocytosis; SD, stable disease. Hillmen P *et al.* Abstract LB1900 presented at the 26th Annual Congress of the European Hematology Association (EHA) 2021 (virtual); June 10–13, 2021.

PFS by investigator assessment

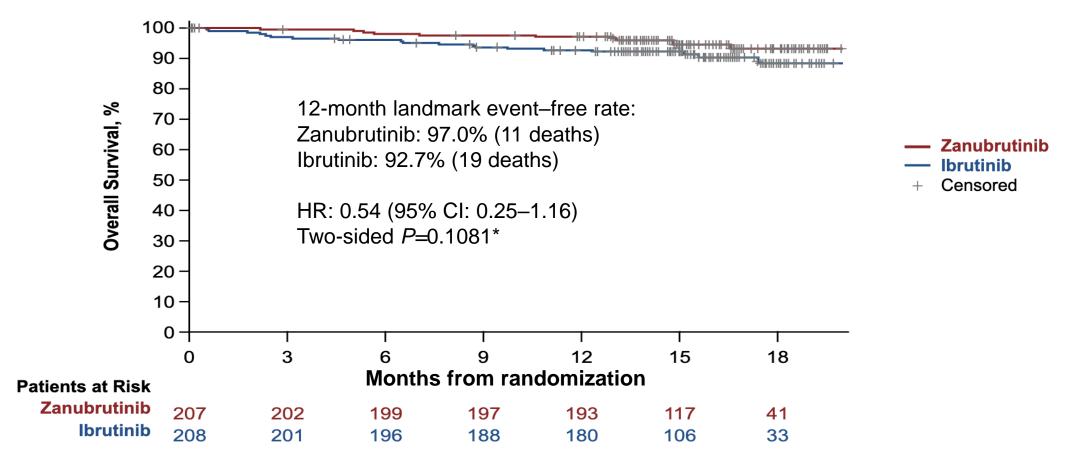


*Not a prespecified analysis; formal analysis of PFS will be based on all patients when the target number of events is reached.

Median PFS follow-up was 14.0 months for both zanubrutinib and ibrutinib arms by reverse KM method.

CI, confidence interval; HR, hazard ratio; KM, Kaplan-Meier; PD, progressive disease; PFS, progression-free survival.

PFS by investigator assessment



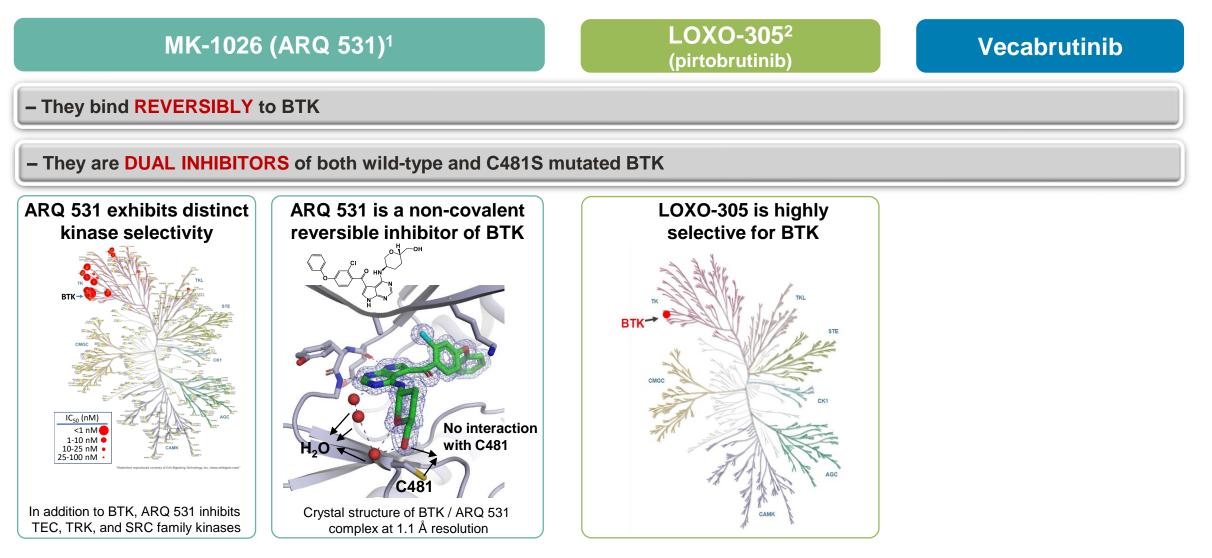
*Not a prespecified analysis; formal analysis of PFS will be based on all patients when the target number of events is reached.

Median PFS follow-up was 14.0 months for both zanubrutinib and ibrutinib arms by reverse KM method.

CI, confidence interval; HR, hazard ratio; KM, Kaplan-Meier; PD, progressive disease; PFS, progression-free survival.

Overall survival

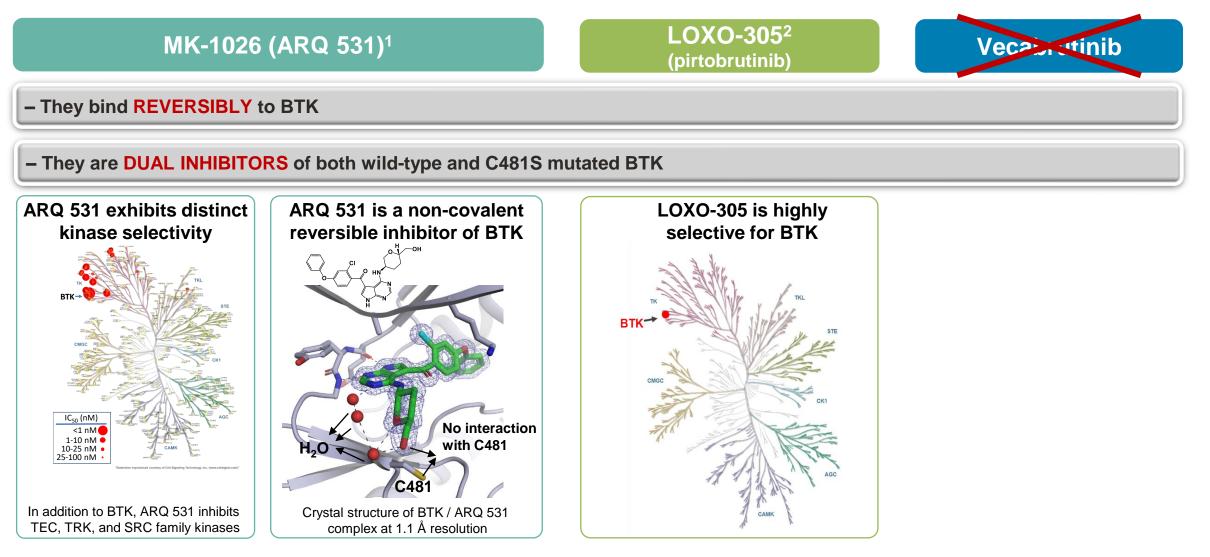
*Not a prespecified analysis.


CI, confidence interval; HR, hazard ratio.

Additional AEs of special interest

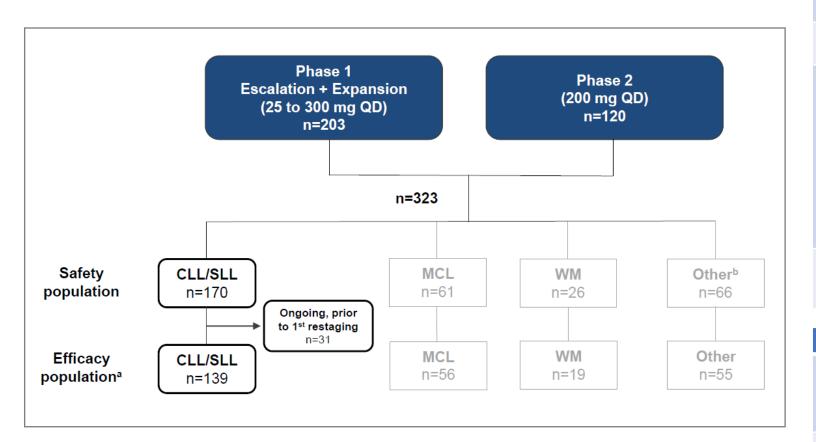
Safety analysis population	Zanubrutinib	(n=204), n (%)	lbrutinib (n=207), n (%)	
	Any grade	Grade ≥3	Any grade	Grade ≥3
Cardiac disorders ^a	28 (13.7)	5 (2.5)	52 (25.1)	14 (6.8)
Atrial fibrillation and flutter (key secondary endpoint)	5 (2.5)	2 (1.0)	21 (10.1)	4 (1.9)
Hemorrhage Major hemorrhage ^b	73 (35.8) 6 (2.9)	6 (2.9) 6 (2.9)	75 (36.2) 8 (3.9)	6 (2.9) 6 (2.9)
Hypertension	34 (16.7)	22 (10.8)	34 (16.4)	22 (10.6)
Infections	122 (59.8)	26 (12.7)	131 (63.3)	37 (17.9)
Neutropenia ^c	58 (28.4)	38 (18.6)	45 (21.7)	31 (15.0)
Thrombocytopeniac	19 (9.3)	7 (3.4)	26 (12.6)	7 (3.4)
Secondary primary malignancies Skin cancers	17 (8.3) 7 (3.4)	10 (4.9) 3 (1.5)	13 (6.3) 10 (4.8)	4 (1.9) 2 (1.0)

Median follow-up: 15 months. All events are of any grade unless otherwise specified. ^aCardiac disorders leading to treatment discontinuation: zanubrutinib 0 patients and ibrutinib 7 patients (3.4%). ^bIncludes hemorrhages that were serious or Grade ≥3, or CNS hemorrhages of all grades. ^cPooled terms including neutropenia, neutrophil count decreased, and febrile neutropenia; thrombocytopenia and platelet count decreased. AE, adverse event; CNS, central nervous system.


Third-generation BTK inhibitors

BTK, Bruton's tyrosine kinase; IC₅₀, half maximal inhibitory concentration.

1. Reiff SD et al. Cancer Discov 2018; 8 (10): 1300–1315. 2. Mato AR et al. Abstract 542; Oral presentation at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition 2020 (virtual); December 5–8, 2020. 73

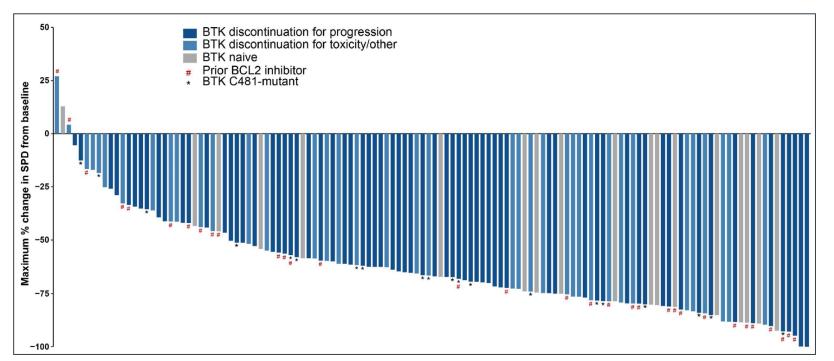

Third-generation BTK inhibitors

BTK, Bruton's tyrosine kinase; IC₅₀, half maximal inhibitory concentration.

1. Reiff SD et al. Cancer Discov 2018; 8 (10): 1300–1315. 2. Mato AR et al. Abstract 542; Oral presentation at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition 2020 (virtual); December 5–8, 2020. 74

LOXO-305 in previously treated CLL/SLL Phase I/II BRUIN Study

BCL, B-cell lymphoma; BTKi, Bruton's tyrosine kinase inhibitor; CAR-T, chimeric antigen receptor T-cell; CLL, chronic lymphocytic leukemia; ECOG PS, Eastern Cooperative Oncology Group Performance Status; MCL, mantle cell lymphoma; PI3K, phosphoinositide 3-kinase; QD, once a day; SLL, small lymphocytic lymphoma; WM, Waldenström's macroglobulinemia.


Mato AR *et al.* Abstract 542; Oral presentation at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition 2020 (virtual); December 5–8, 2020.

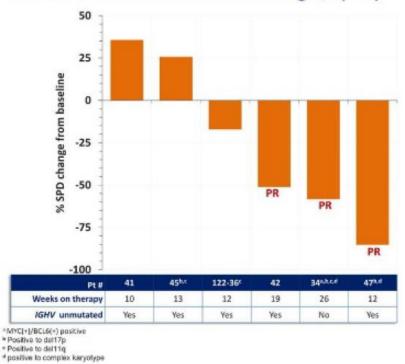
Characteristics	n=170
Median age, years (range)	69 (36–88)
Female, n (%) Male, n (%)	61 (36) 109 (64)
ECOG PS, n (%) 0 1 2	87 (51) 69 (41) 13 (8)
Median prior lines of systemic therapy (range) BTK pre-treated	3 (1–11) 4 (1–11)
Prior therapy, n (%) BTK inhibitor Chemotherapy Anti-CD20 antibody BCL2 inhibitor PI3K inhibitor Lenalidomide Autologous stem cell transplant Allogeneic stem cell transplant CAR-T	146 (86) 140 (82) 153 (90) 57 (34) 36 (21) 14 (8) 0 3 (2) 10 (6)
Reason discontinued any prior BTKi, n (%) Progressive disease Toxicity/other	98 (67) 48 (33)
Baseline molecular characteristics	

Mutation status, n (%) BTK C481-mutant BTK wild-type PLCG2-mutant	25 (27) 66 (73) 4 (4)
High-risk molecular findings, n (%) 17p deletion TP53 mutation 17p13 deletion + TP53 mutant IGHV unmutated 11q deletion	20 (25) 27 (30) 18 (22) 71 (88) 15 (19)

BRUIN study Safety profile and efficacy


All doses and patients (n=323)							
Adverse event	Treatment-emergent AEs, (≥10%), n (%)				Treatment-related AEs, n (%)		
Adverse event	Grade 1	Grade 2	Grade 3	Grade 4	Any grade	Grades 3/4	Any grade
Fatigue	40 (12)	22 (7)	3 (1)	-	65 (20)	2 (<1)	27 (8)
Diarrhea	45 (14)	10 (3)	-	-	55 (17)	-	28 (9)
Contusion	37 (12)	5 (2)	-	-	42 (13)	-	29 (9)
AEs of special interest							
Bruising	48 (15)	5 (2)	-	-	53 (16)	-	37 (12)
Rash	30 (9)	5 (2)	-	-	35 (11)	-	18 (6)
Arthralgia	13 (4)	3 (1)	-	-	16 (5)	-	5 (2)
Hemorrhage	10 (3)	4 (1)	1 (<1)	-	15 (5)	-	5 (2)
Hypertension	2 (<1)	9 (3)	4 (1)	-	15 (5)	-	4 (1)
AF/flutter	_	2 (<1)	-	-	2 (<1)	-	_

AE, adverse event; AF, atrial fibrillation; BCL, B-cell lymphoma; BTK, Bruton's tyrosine kinase; SPD, sum of the products of the diameters. Mato AR *et al.* Abstract 542; Oral presentation at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition 2020 (virtual); December 5–8, 2020.


Phase I dose escalation study of MK-1026 (ARQ 531)

Mean Steady-state Concentrations of ARQ 531 at 65 mg QD (N=21) 2000 CIDS C1D23 0 10 20 30 40 50 Time (days) pBTK inhibition by ARQ 531 at 65 mg QD (N=17) 150

Best Responses in BTK C481S-Mutated,

Best Responses in Richter's Transformation Evaluable Patients Treated at ≥65 mg QD (n=6)

vojtigi uoj tre-dose C1D1 at 4h

BTK, Bruton's tyrosine kinase; CLL, chronic lymphocytic leukemia; C_{min}, minimum concentration; pBTK, Bruton's tyrosine kinase phosphorylation; QD, once a day; Pt, patient; R/R, relapsed/refractory; SPD, sum of the products of the diameters.

Woyach J et al. Abstract 4298 (poster) from the 61st American Society of Hematology (ASH) Annual Meeting and Exposition 2019; Orlando, FL, USA, December 7–10, 2019.

Summary: BTK inhibitors in CLL/SLL

- The RESONATE-2 study demonstrated the long-term clinical benefits of first-line ibrutinib monotherapy to patients with CLL, including those with high-risk prognostic features
 - $_{\circ}~$ TEAEs are usually manageable
 - Specific TEAEs of concern are atrial fibrillation, hypertension, and bleeding
- Next-generation BTK inhibitors have the potential to offer non-inferior or superior efficacy with improved safety profiles compared with ibrutinib in patients with R/R CLL
 - ELEVATE-RR trial demonstrated the non-inferiority of acalabrutinb vs. ibrutinib and a reduced incidence of cardiovascular side effects and bleeding
 - ALPINE trial demonstrated a superior ORR of zanubrutinib vs. ibrutinib and reduced incidence of cardiovascular AEs
- Non-covalent BTK inhibitors may become a valuable option for patients with CLL who are resistant to covalent BTK inhibitors targeting C481

Clinical case study

Medical history

• 69-year-old man, retired, active life

Comorbidities

- Tuberculosis (-50 years from CLL diagnosis)
- Partial gastrectomy with Billroth 2 resection due to peptic ulcer (–47 years)

CLL history

- Year 0: CLL diagnosis, Rai Stage IV
- WBC: 10.6 × 10⁹/L, Hgb: 5.8 g/dL, PLT: 91 × 10⁹/L
- Negative Coombs test, no vitamin and/or iron deficiency, consumed haptoglobin
 - Steroid treatment started but achieved only mild and shortlasting benefit
- Due to consumed haptoglobin, steroid treatment was started but achieved only mild and short-lasting benefit

Staging procedures

- CT scan: Multiple lymph nodes up to 3×3 cm, splenomegaly 24 cm
- Bone marrow biopsy: 80%–90% infiltration by CLL cells

Biomarker assessment

- FISH on PB: Normal
- TP53 mutation status: Wild-type
- IGHV mutation analysis: Borderline (identity 97.96%)

+5–10 months after CLL diagnosis

- Randomized to chlorambucil + ofatumumab (COMPLEMENT 1 OMB110911)
- Response assessment: PR (residual mild splenomegaly: 15 cm)

+5–10 months after CLL diagnosis

- Randomized to chlorambucil + ofatumumab (COMPLEMENT 1 OMB110911)
- Response assessment: PR (residual mild splenomegaly: 15 cm)

Follow-up

- +1 year, 4 months: Right hip replacements due to coxarthrosis
- +6 years, 5 months: Right ear squamous cell carcinoma surgically treated

+5–10 months after CLL diagnosis

- Randomized to chlorambucil + ofatumumab (COMPLEMENT 1 OMB110911)
- Response assessment: PR (residual mild splenomegaly: 15 cm)

Follow-up

- +1 year, 4 months: Right hip replacements due to coxarthrosis
- +6 years, 5 months: Right ear squamous cell carcinoma surgically treated

CLL progression (+6.5 years – 75 years of age)

- WBC: 4.0 × 10⁹/L (neutrophils: 1.6 × 10⁹/L; lymphocytes: 2.3 × 10⁹/L); hemoglobin: 9.0 g/dL; platelets: 81 × 10⁹/L
- EGD: No abnormal findings in gastric resection
- Bone marrow biopsy: 90% CLL infiltration
- CT scan: Cervical lymph nodes up to 2.5 × 2.2 mm, axillary lymph nodes 3 × 2 cm, confluent abdominal lymph nodes, splenomegaly (bipolar diameter: 22 cm)

+5–10 months after CLL diagnosis

- Randomized to chlorambucil + ofatumumab (COMPLEMENT 1 OMB110911)
- Response assessment: PR (residual mild splenomegaly: 15 cm)

Follow-up

- +1 year, 4 months: Right hip replacements due to coxarthrosis
- +6 years, 5 months: Right ear squamous cell carcinoma surgically treated

CLL progression (+6.5 years – 75 years of age)

- WBC: 4.0 × 10⁹/L (neutrophils: 1.6 × 10⁹/L; lymphocytes: 2.3 × 10⁹/L); hemoglobin: 9.0 g/dL; platelets: 81 × 10⁹/L
- EGD: No abnormal findings in gastric resection
- Bone marrow biopsy: 90% CLL infiltration
- CT scan: Cervical lymph nodes up to 2.5 × 2.2 mm, axillary lymph nodes 3 × 2 cm, confluent abdominal lymph nodes, splenomegaly (bipolar diameter: 22 cm)

CLL treatment (+7 years)

• Started ibrutinib 420 mg QD \rightarrow PR, anemia recovered

Treatment history: AEs

Date	AE
+7 years	G2 diarrhea
+7 years	G3 diarrhea

Treatment history: AEs

Date	AE		
+7 years	G2 diarrhea		
+7 years	G3 diarrhea		
+7 years, 9 months	Iron deficiency with fecal occult blood test positive (three samples)		
+7 years, 10 months	R access due to left arm hyposthenia \rightarrow clopidogrel prescribed		
+7 years, 10 months	R access due to fever: right pneumonia (first ibrutinib temporary interruption)		
+8 years	ER access due to fever: left pneumonia (second ibrutinib temporary interruption) \rightarrow Ibrutinib restarted at 280 mg QD		

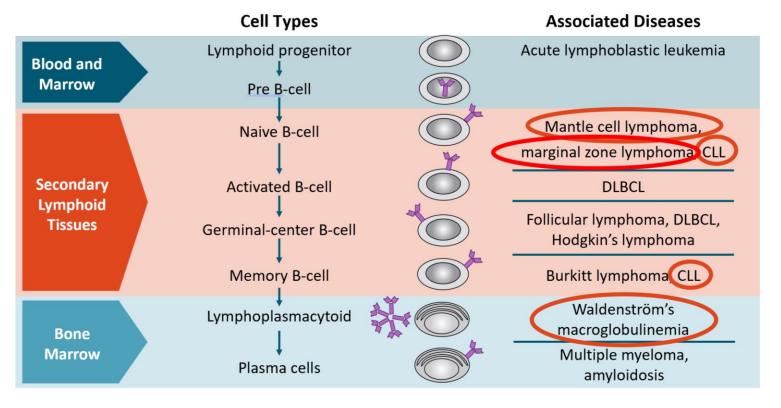
Treatment history: AEs

Date	AE
+7 years	G2 diarrhea
+7 years	G3 diarrhea
+7 years, 9 months	Iron deficiency with fecal occult blood test positive (three samples)
+7 years, 10 months	ER access due to left arm hyposthenia \rightarrow clopidogrel prescribed
+7 years, 10 months	ER access due to fever: right pneumonia (first ibrutinib temporary interruption)
+8 years	ER access due to fever: left pneumonia (second ibrutinib temporary interruption) \rightarrow Ibrutinib restarted at 280 mg QD
+8 years, 5 months	Hospitalization due to bleeding from type IIb gastric ulcer with anemia requiring transfusion support; ibrutinib stopped (third ibrutinib temporary interruption) and restarted at 280 mg QD; clopidogrel discontinued
+8 years, 6 months	Hospitalization (4 days) due to bleeding from gastrojejunal ulcer with anemia requiring transfusion support; ibrutinib stopped (fourth ibrutinib temporary interruption) and restarted at 280 mg QD
+8 years, 8 months	Gastrointestinal bleeding \rightarrow ibrutinib discontinuation

Personalized treatment in CLL

Next-generation BTK inhibitor monotherapy in the treatment of relapsed/refractory B-cell lymphomas

Dr. Alessandra Tedeschi Niguarda Cancer Center, Italy


Disclosures

• Consulting services for AbbVie, AstraZeneca, BeiGene, and Janssen-Cilag S.P.A.

B-cell malignancies / B-cell receptor signaling

- Survival of resting mature B-cells depends on BCR signaling
- Some B-cell malignancies depend on tonic BCR signaling for tumor expansion and proliferation
 - Constitutive BCR activation
 - Antigen-driven BCR activation

B-cell development and associated diseases

Approved covalent BTK inhibitors in WM, MZL, and MCL

Ibrutinib

- First-in-class BTK inhibitor
- Irreversible inhibition
- Approved:
 - \circ FDA
 - MCL, MZL, WM
 - o EMA
 - MCL, WM
- Once-daily dosing:
 - $\circ~$ 420 mg PO daily for WM
 - 560 mg PO daily for MCL/MZL

Acalabrutinib

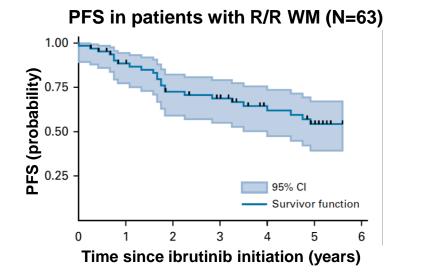
- Next-generation BTK inhibitor
- Irreversible inhibition
- Highly selective
- Approved:
 - \circ FDA
 - MCL
- Twice-daily dosing:
 - 100 mg PO every 12 hours for MCL

Zanubrutinib

- Next-generation BTK inhibitor
- Irreversible inhibition
- Highly selective
- Approved:
 - o FDA
 - MCL, MZL, WM
 - o EMA
 - CHMP positive opinion for WM

92

 160 mg twice daily or 320 mg once daily for MCL/WM/MZL

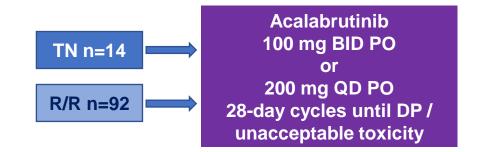

BTK, Bruton's tyrosine kinase; EMA, European Medicines Agency; FDA, Food and Drug Administration; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; PO, by mouth; WM, Waldenström's macroglobulinemia. 1. EMA: Brukinsa. Available at: https://www.ema.europa.eu/en/medicines/human/summaries-opinion/brukinsa. 2. FDA: Brukinsa PI. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/213217s005lbl.pdf. 3. EMA: Calquence SmPC. Available at: https://www.ema.europa.eu/en/documents/product-information/calquence-epar-productinformation_en.pdf. 4. FDA: Calquence PI. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/210259s006s007lbl.pdf. 5. EMA: Imbruvica SmPC. Available at: https://www.ema.europa.eu/en/documents/product-information/imbruvica-epar-product-information_en.pdf. 6. FDA: Imbruvica PI. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210563s000lbl.pdf. All accessed September 2021.

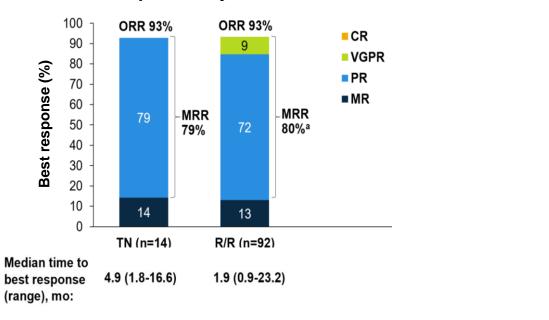
Waldenström's macroglobulinemia

Ibrutinib monotherapy in symptomatic pretreated patients with WM

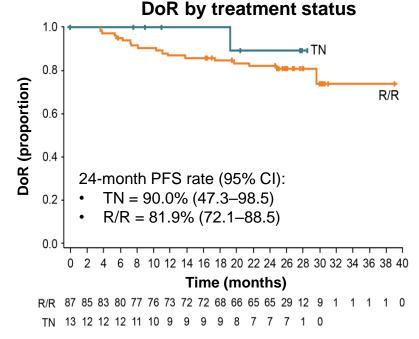
Variable	All	MYD88 ^{Mut} CXCR4 ^{WT}	MYD88 ^{Mut} CXCR4 ^{Mut}	MYD88 ^{wt} CXCR4 ^{wt}	Р
No. of patients	63	36	22	4	
Overall response rate	57 (90.5)	36 (100.0)	19 (86.4)	2 (50.0)	< .0100
Major response rate	50 (79.4)	35 (97.2)	15 (68.2)	0 (0.0)	< .0001
Categorical responses					
No response	6 (9.5)	0 (0.0)	3 (13.6)	2 (50.0)	< .0001
Minor response	7 (11.1)	1 (2.8)	4 (18.2)	2 (50.0)	
Partial response	31 (49.2)	18 (50.0)	13 (59.1)	0 (0.0)	
Very good partial response	19 (30.2)	17 (47.2)	2 (9.1)	0 (0.0)	

Response rates and kinetics of responses of pretreated patients with WM who received ibrutinib monotherapy

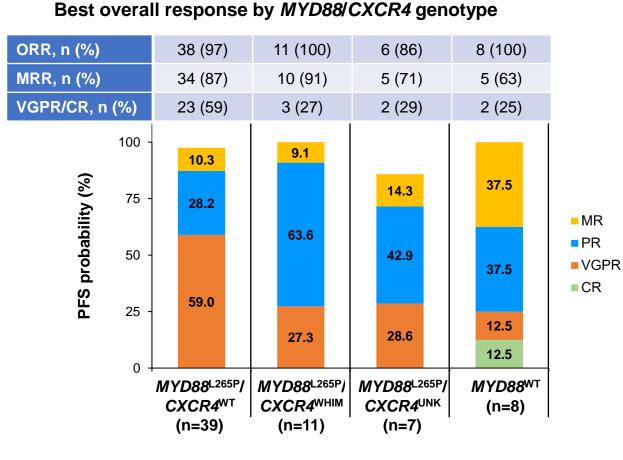

PFS by genotype (N=62)

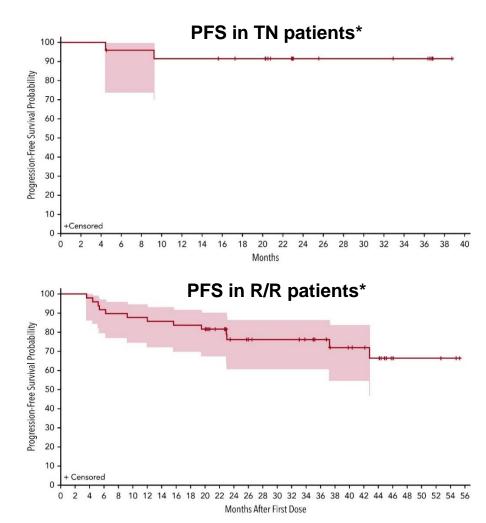


CI, confidence interval; Mut, mutated; PFS, progression-free survival; R/R, relapsed/refractory; WM, Waldenström's macroglobulinemia; WT, wild-type. Treon SP *et al. J Clin Oncol* 2021; 39 (6): 565–575.


Acalabrutinib monotherapy in patients with WM: A Phase II study

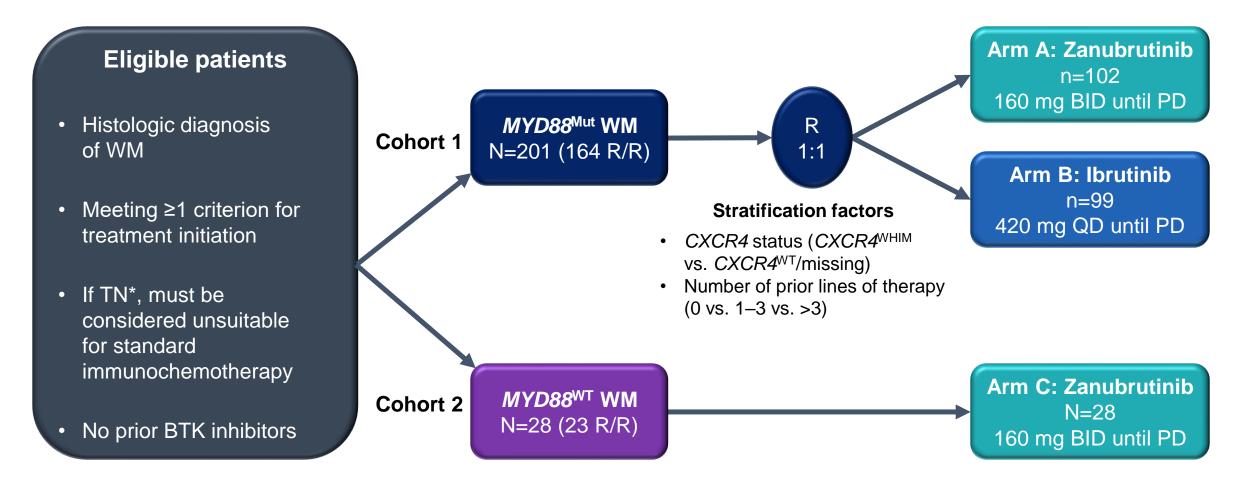
Best responses by treatment status




Characteristic	TN (n=14)	R/R (n=92)
Median (range) age, years	73 (48–86)	69 (39–90)
Median (range) number of prior treatments	-	2 (1–7)
≥3 previous treatments, n (%)	-	41 (45)
Refractory disease, n (%)	-	33 (36)

BID, twice a day; CI, confidence interval; CR, complete response; DoR, duration of response; DP, disease progression; MR, minor response; MRR, major response rate; ORR, overall response rate; PFS, progression-free survival; PO, by mouth; PR, partial response; QD, once a day; R/R, relapsed/refractory; TN, treatment-naive; VGPR, very good partial response; WM, Waldenström's macroglobulinemia. Owen RG *et al. Lancet Haematol* 2020; 7 (2): e112–e121.

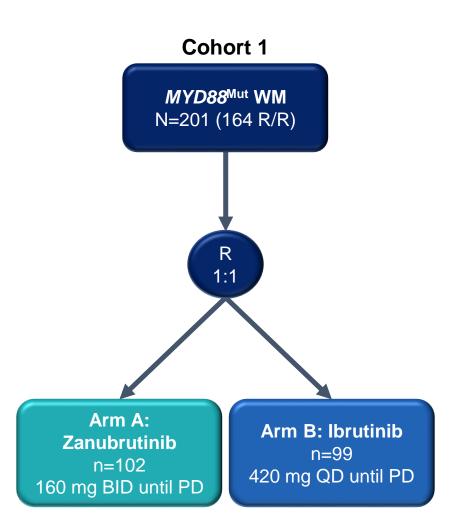
Phase I/II of study BGB-3111-AU-003: WM cohort



*Shaded areas indicate 95% confidence intervals.

CR, complete response; MR, minor response; MRR, major response rate; ORR, overall response rate; PFS, progression-free survival; PR, partial response; R/R, relapsed/refractory; TN, treatment-naive; UNK, unknown; VGPR, very good partial response; WHIM, warts, hypogammaglobulinemia, infections, and myelokathexis; WM, Waldenström's macroglobulinemia; WT, wild-type. Trotman J *et al. Blood* 2020; 136 (18): 2027–2037.

ASPEN study design: Zanubrutinib vs. ibrutinib in MYD88^{Mut} WM

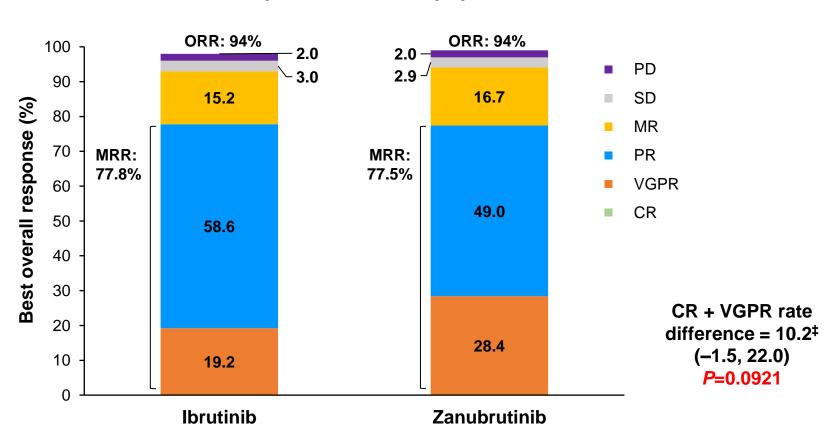


*Up to 20% of the overall population.

BID, twice a day; BTK, Bruton's tyrosine kinase; Mut, mutated; PD, progressive disease; QD, once a day; R, randomization; R/R, relapsed/refractory; TN, treatment-naive; WHIM, warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis; WM, Waldenström's macroglobulinemia; WT, wild-type.

1. Tam CS et al. Abstract 8007 presented at the 2020 American Society of Clinical Oncology (ASCO) Annual Meeting (virtual); May 29–31, 2020. 2. Dimopoulos MA et al. Blood 2014; 124 (9): 1404–1411.

ASPEN study design: Zanubrutinib vs. ibrutinib in MYD88^{Mut} WM

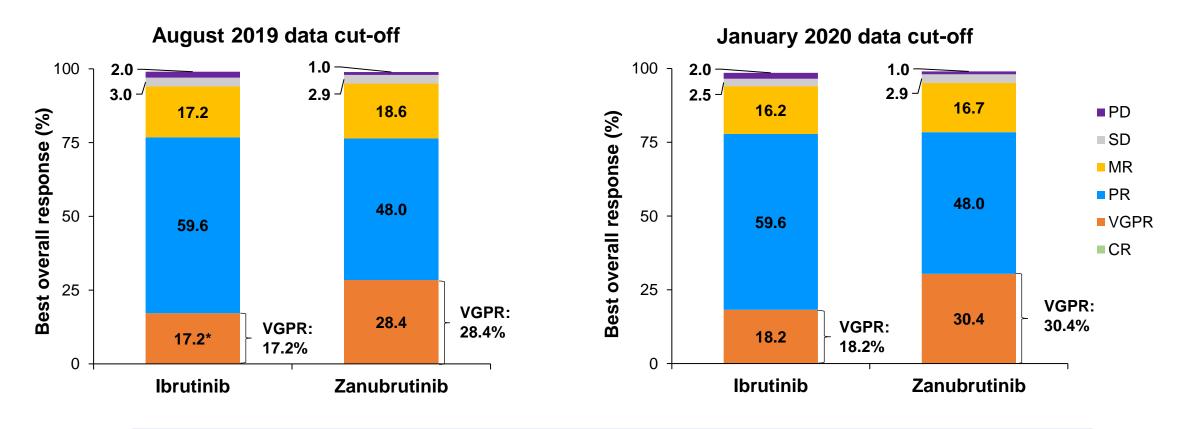

	Overall ITT			
Characteristics	Zanubrutinib (n=102)	lbrutinib (n=99)		
Median (range) age, years >75 years	70.0 (45, 87) 34 (33)	70.0 (38, 90) 22 (22)		
Gender: Male/female, n (%)	69 (68) / 33 (32)	65 (66) / 34 (34)		
Prior lines of therapy, n (%) 0 1–3 >3	19 (19) 76 (75) 7 (7)	18 (18) 74 (75) 7 (7)		
Genotype by central lab*, n (%) MYD88 ^{L265P} /CXCR4 ^{WT} MYD88 ^{L265P} /CXCR4 ^{WHIM}	91 (89) 11 (11)	90 (91) 8 (8)		
IPSSWM (derived), n (%) Low Intermediate High	17 (17) 38 (37) 47 (46)	13 (13) 42 (42) 44 (44)		
Hemoglobin ≤110 g/L, n (%)	67 (66)	53 (54)		

*Up to 20% of the overall population.

BID, twice a day; Mut, mutated; PD, progressive disease; QD, once a day; PD, progressive disease; R, randomization; R/R, relapsed/refractory; WHIM, warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis; WM, Waldenström's macroglobulinemia; WT, wild-type. Tam CS *et al. Blood* 2020; 136 (18): 2038–2050.

ASPEN study: IRC-assessed efficacy

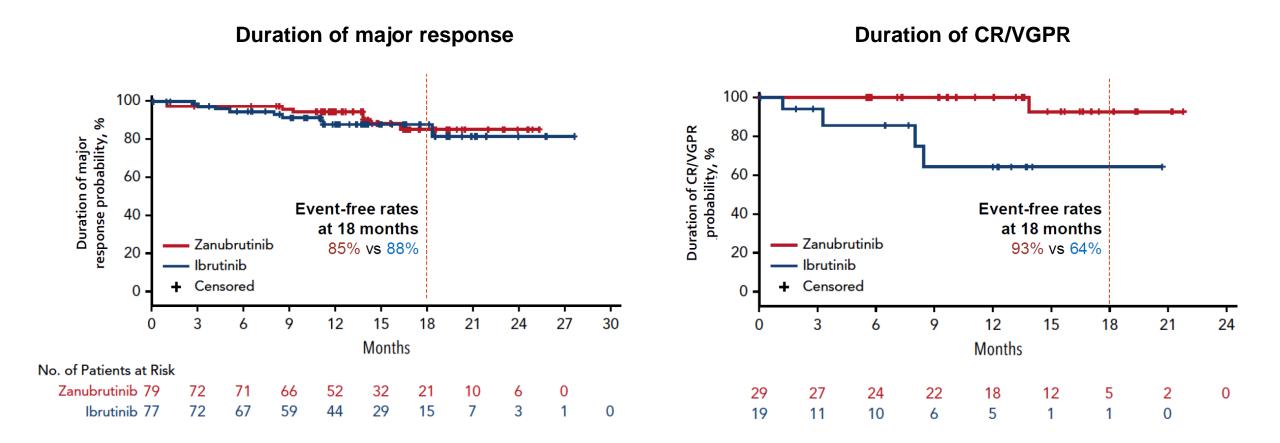
 Superiority in CR + VGPR rate for zanubrutinib compared with ibrutinib in the R/R population (primary study hypothesis) was not significant


Best overall response in the ITT population*

Overall concordance between IRC and investigators = 94%. *Data cut-off: August 31, 2019. ‡Adjusted for stratification factors and age group.

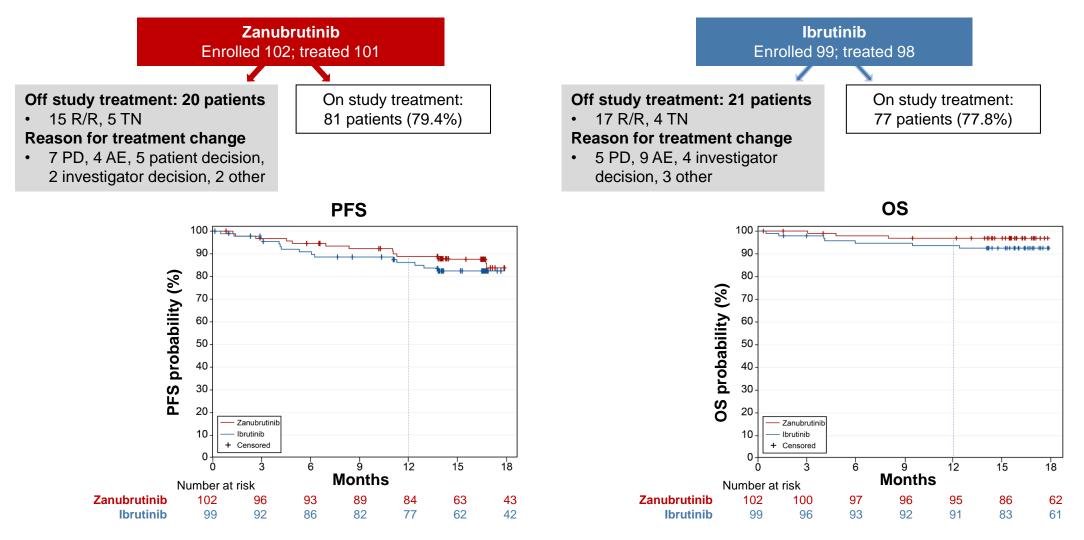
CR, complete response; IRC, independent review committee; ITT, intention-to-treat; MR, minor response; MRR, major response rate; ORR, overall response rate; PD, progressive disease, PR, partial response; R/R, relapsed/refractory; SD, stable disease; VGPR, very good partial response.

Tam CS et al. Abstract 8007 presented at the 2020 American Society of Clinical Oncology (ASCO) Annual Meeting (virtual); May 29–31, 2020.


ASPEN study: Investigator-assessed efficacy

IgM reduction: AUC for IgM reduction over time was significantly greater for zanubrutinib vs. ibrutinib (*P*=0.037)

*Excluded 2 patients with VGPR by IRC: MR (extramedullary disease present) and PR (immunoglobulin M assessment by local serum protein electrophoresis M-protein test). AUC, area under the curve; CR, complete response; IgM, immunoglobulin M; MR, minimal response; PD, progressive disease; PR, partial response; SD, stable disease; VGPR, very good partial response. Tam CS *et al.* Abstract 8007 presented at the 2020 American Society of Clinical Oncology (ASCO) Annual Meeting (virtual); May 29–31, 2020.


Duration of major response and CR/VGPR

CR, complete response; VGPR, very good partial response. Tam CS *et al. Blood* 2020; 136 (18): 2038–2050.

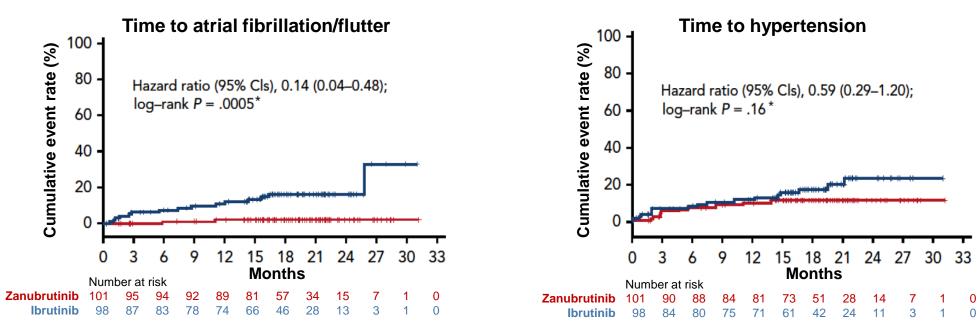
Patient disposition, PFS, and OS in the ITT population

Median study follow-up: 19.4 months

AE, adverse event; ITT, intention-to-treat; OS, overall survival; PD, progressive disease; PFS, progression-free survival; R/R, relapsed/refractory; TN, treatment-naive. Tam CS *et al.* Abstract 8007 presented at the 2020 American Society of Clinical Oncology (ASCO) Annual Meeting (virtual); May 29–31, 2020.

Safety and tolerability

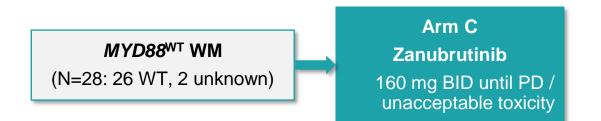
Category, n (%)	Zanubrutinib (n=101)	lbrutinib (n=98)
Patients with ≥1 AE	98 (97.0)	97 (99.0)
Grade ≥3	59 (58.4)	62 (63.3)
Serious	40 (39.6)	40 (40.8)
Fatal AEs	1 (1.0)*	4 (4.1) [‡]
AEs leading to treatment discontinuation	4 (4.0)†	9 (9.2)§
AEs leading to dose reduction	14 (13.9)	23 (23.5)
AEs leading to dose held	47 (46.5)	55 (56.1)
Patients with ≥1 treatment-related AE	80 (79.2)	84 (85.7)
Patients with ≥1 AE of interest	86 (85.1)	81 (82.7)

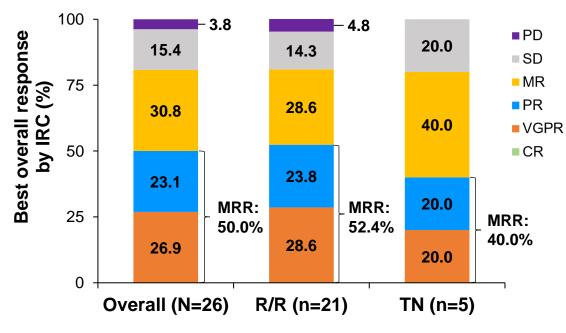

*Cardiac arrest after plasmapheresis. †G5 cardiac arrest after plasmapheresis; G4 neutropenia; G4 subdural hemorrhage; G2 plasma cell myeloma. ‡Cardiac failure acute; sepsis (n=2); unexplained death. §G5 sepsis (n=2); G5 unexplained death; G3 acute myocardial infarction; G3 hepatitis; G3 pneumonia; G2 drug-induced liver injury; G2 pneumonitis; G1 pneumonitis.

AE, adverse event.

Tam CS et al. Abstract 8007 presented at the 2020 American Society of Clinical Oncology (ASCO) Annual Meeting (virtual); May 29–31, 2020.

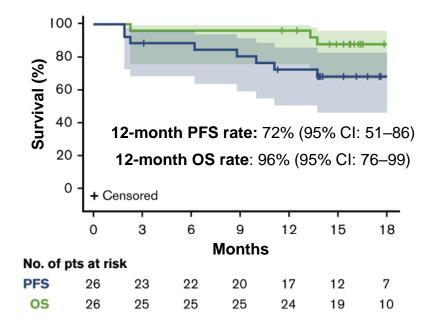
BTK inhibitor class AE categories of interest


Event professed term $p(0/)$	All grade	es (≥20%)	Grade ≥3 (≥5%)		
Event preferred term, n (%)	lbrutinib (n=98)	Zanubrutinib (n=101)	lbrutinib (n=98)	Zanubrutinib (n=101)	
Atrial fibrillation/Flutter	18 (18.4)	3 (3.0)	7 (7.1)	0 (0.0)	
Diarrhea (PT)	32 (32.7)	22 (21.8)	2 (1.0)	3 (3.0)	
Hemorrhage	59 (60.2)	51 (50.5)	9 (9.2)	6 (5.9)	
Major hemorrhage	10 (10.2)	6 (5.9)	9 (9.2)	6 (5.9)	
Hypertension	20 (20.4)	13 (12.9)	15 (15.3)	8 (7.9)	


AE, adverse event; CI, confidence interval; PT, preferred term.

Tam CS et al. Blood 2020; 136 (18): 2038–2050. Tam CS et al. Abstract 8007 presented at the 2020 American Society of Clinical Oncology (ASCO) Annual Meeting (virtual); May 29–31, 2020.

ASPEN study: Zanubrutinib in MYD88^{WT} WM

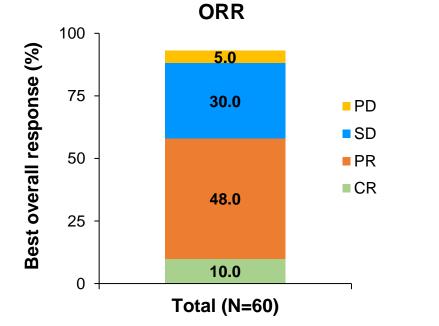


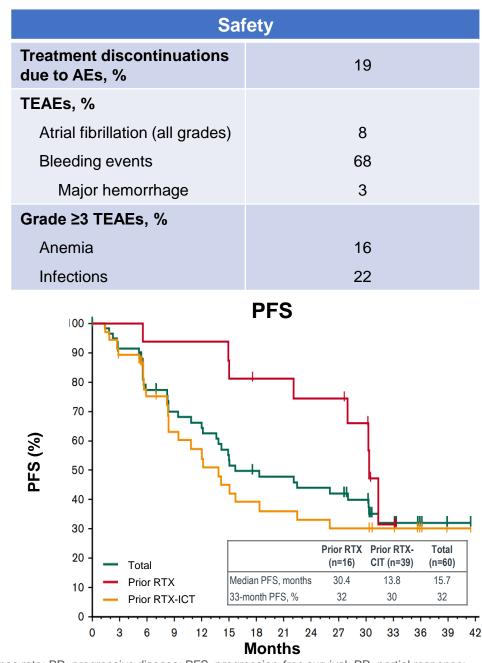
Best overall response in R/R or TN WM

Patient and disease characteristics	Total (N=28)
Median (range) age, years	70.1 (39–87)
TN, n (%)	5 (17.9)
R/R, n (%)	23 (82.1)
Median (range) number of prior treatments	1 (1–5)
<i>MYD88^{wT}/CXCR4^{wT}</i> , n (%)	23 (82.1)

Survival in R/R or TN[†] WM

BID, twice a day; CI, confidence interval; CR, complete response; IRC, independent review committee; MR, minimal response; MRR, major response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; pts, patients; R/R, relapsed/refractory; SD, stable disease; TN, treatment-naive; VGPR, very good partial response; WM, Waldenström's macroglobulinemia; WT, wild-type. Dimopoulos M *et al.* Abstract 2022 presented at the 25th Annual Congress of the European Hematology Association (EHA) 2020 (virtual); June 11–21, 2020.


Summary: BTK inhibitors in WM


- Ibrutinib based on a Phase II study is the first-in-class BTK inhibitor approved in WM
- Zanubrutinib treatment compared with ibrutinib is associated with:
 - $_{\circ}~$ Better quality of responses
 - $_{\circ}~$ Greater and sustained IgM reduction over time
 - High percentage of responses and rapid IgM decrease even in *MYD88*^{WT} patients
- Zanubrutinib demonstrated clinically meaningful advantages in safety and tolerability
 - $_{\odot}\,$ A reduction in the risk of atrial fibrillation/flutter
 - $_{\circ}~$ Lower rates of major bleeding
 - Fewer AEs leading to death or treatment discontinuation

Marginal zone lymphoma

Ibrutinib in R/R MZL

- N=60, median (range) age: 66 years (30–92 years)
- Median (range) number of prior therapies: 2 (1–9)
- ≥3 prior therapies: 35%
- Median follow-up: 33.1 months

AE, adverse event; ICT, immunochemotherapy; CR, complete response; MZL, marginal zone lymphoma; ORR, overall response rate; PD, progressive disease; PFS, progression-free survival; PR, partial response; R/R, relapsed/refractory; RTX, rituximab; SD, stable disease; TEAE, treatment-emergent adverse event. Noy A *et al. Blood Adv* 2020; 4 (22): 5773–5784.

Phase II study MAGNOLIA: Zanubrutinib in R/R MZL

- Tumor response by investigator assessment
 - Response is based on the Lugano classification for non-Hodgkin lymphoma
 - Blinded response assessment by IRC is ongoing
- 68 patients enrolled
- 66 patients evaluable
 - Relapsed: n=44 (66.7%) / refractory: n=22 (33.3%)
 - $_{\circ}~$ MZL subtypes:
 - Extranodal: n=26 (38.2%)
 - Nodal: n=26 (38.2%)
 - Splenic: n=12 (17.6%)
 - Unknown: n=4 (5.9%)

MAGNOLIA study design: Zanubrutinib in R/R MZL

R/R MZL (N=68)

 ≥1 prior systemic therapy including a CD20-directed regimen

Zanubrutinib monotherapy 160 mg PO BID until PD or unacceptable toxicity

Primary endpoint:

 ORR by IRC using Lugano classification

Key secondary endpoints:

• ORR by PI; PFS; OS; DoR; safety

BID, twice a day; DoR, duration of response; IRC, independent review committee; MZL, marginal zone lymphoma; ORR, overall response rate; OS, overall survival; PD, progressive disease; PI, principal investigator; PFS, progression-free survival; PO, by mouth; R/R, relapsed/refractory.

Opat S et al. Abstract 339 presented at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition 2020 (virtual); December 5–8, 2020.

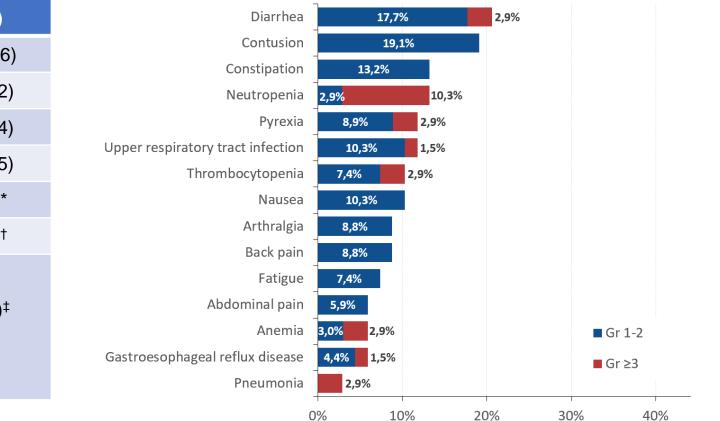
MAGNOLIA: Best overall response

Investigator assessment by MZL subtypes (N=66)

• Discontinued prior to first assessment / missing: n=2 (3%)

Best response	Total (N=66)	Extranodal (n=25)	Nodal (n=25)	Splenic (n=12)	Unknown (n=4)
ORR (CR or PR), n (%) [95% Cl] [†]	49 (74.2) [61.99–84.22]	17 (68.0) [46.50–85.05]	21 (84.0) [63.92–95.46]	9 (75.0) [42.81–94.51]	2 (50.0) [6.76–93.24]
CR, n (%)	16 (24.2)	10 (40.0)	4 (16.0)	1 (8.3)	1 (25.0)
PR, n (%)	33 (50.0)	7 (28.0)	17 (68.0)	8 (66.7)	1 (25.0)
SD, n (%)	10 (15.2)	5 (20.0)	2 (8.0)	1 (8.3)	2 (50.0)
PD, n (%)	5 (7.6)	2 (8.0)	2 (8.0)	1 (8.3)	0

Median (range) time to response, months:	2.8 (1.7–11.1)
Median (range) study follow-up, months:	10.7 (1.6–16.7)


CI, confidence interval; CR, complete response; MZL, marginal zone lymphoma; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease. Opat S *et al.* Abstract 339 presented at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition 2020 (virtual); December 5–8, 2020.

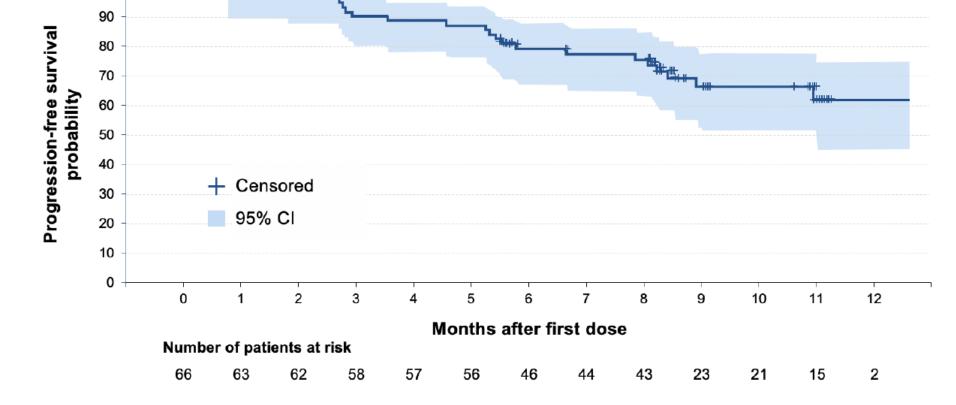
MAGNOLIA: TEAEs

Summary of TEAEs

TEAEs (N=68)	n (%)
Patients with at least 1 TEAE	65 (95.6)
Grade ≥3 TEAEs	26 (38.2)
Serious TEAEs	22 (32.4)
TEAEs leading to dose interruption	16 (23.5)
TEAEs leading to study drug discontinuation	2 (2.9)*
TEAEs leading to death	1 (1.5)†
TEAEs leading to dose reduction	0
Atrial fibrillation/flutter (all grades)	2 (2.9) [‡]
Hypertension	0
Major hemorrhage	0

TEAEs in ≥5% of patients or Grade ≥3 TEAEs in ≥2 patients regardless of causality[§]

*One patient discontinued because of pyrexia (later attributed to disease progression); one patient died from myocardial infarction. [†]One patient with pre-existing cardiovascular disease died from myocardial infection. [‡]Atrial fibrillation occurred in a patient with pre-existing atrial fibrillation (21 days after end of treatment due to disease progression). [§]Neutropenia includes neutropenia and neutrophil count decreased; thrombocytopenia includes thrombocytopenia and platelet count decreased.


Gr, grade; TEAE, treatment-emergent adverse event.

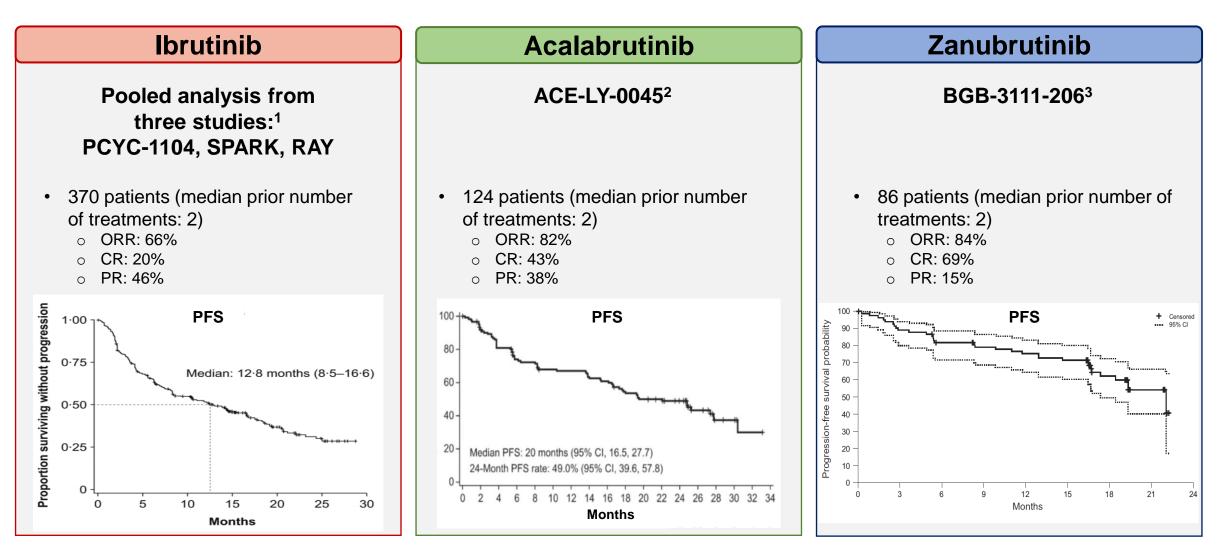
Opat S et al. Abstract 339 presented at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition 2020 (virtual); December 5–8, 2020.

MAGNOLIA: PFS by investigator assessment

100

- PFS median (range) follow-up of 9.13 (0.03–16.46) months
- Patients on study treatment (n=44; 64.7%)

PFS by investigator assessment


- Event-free rate
 - 80% (6 months)
 - 67% (9 months)

Summary: BTK inhibitors in MZL

- Chemotherapy-free treatment may become an effective option in R/R MZL
- Based on efficacy and tolerability, BTK inhibitors may become the treatment of choice in patients with advanced disease
- Ibrutinib is the first-in-class BTK inhibitor approved by the FDA
- The next-generation BTK inhibitor zanubrutinib showed:
 - High activity with clinical benefit observed in 89% of patients
 - Responses consistent across subgroups including high-risk patients
 - Good tolerability resulting in high treatment adherence (99.6% median relative dose intensity)

Mantle cell lymphoma

BTK inhibitors in R/R MCL

BTK, Bruton's tyrosine kinase; CI, confidence interval; CR, complete response; MCL, mantle cell lymphoma; ORR, overall response rate; PFS, progression-free survival; PR, partial response; R/R, relapsed/refractory. 1. Rule S et al. Br J Haematol 2017; 179 (3): 430–438. 2. Wang M et al. Lancet 2018; 391 (10121): 659–667. 3. Song Y et al. Clin Cancer Res 2020; 26 (16): 4216–4224.

Summary: BTK inhibitors in MCL

- BTK inhibitors changed the treatment paradigm in salvage therapy of MCL and are now considered to be the standard of care
- Data from clinical trials (non-randomized) suggest that next-generation BTK inhibitors may offer greater selectivity and more tolerable side effect profiles than ibrutinib
- Zanubrutinib achieves high quality responses, which translate into long PFS durations

The BTK inhibitor story is not over...

The BTK inhibitor story is not over...

May the non-covalent BTK inhibitor overcome resistance?

BRUIN study: LOXO-305 (pirtobrutinib) Phase I/II study

- MCL: 56 patients (median prior number of treatments: 3; 93% received a prior BTK inhibitor)
 - ORR: 52%
 - CR: 25%
 - PR: 27%
- WM: 19 patients (median prior number of treatments: 3; 68% received a prior BTK inhibitor)
 - ORR: 68%
 - CR: 0%
 - PR: 47%
 - Minor response: 21%

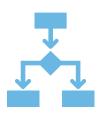
Discussion and audience Q&A

Moderator: Professor Wojciech Jurczak

Summary

Chair: Professor Wojciech Jurczak

Summary of speaker presentations


BTK inhibition with ibrutinib is effective and generally well-tolerated for patients with CLL, WM or MCL, but treatment may be limited by adverse events, such as atrial fibrillation, bleeding, or infection

The next-generation BTK inhibitors, such as zanubrutinib and acalabrutinib, are more selective for BTK compared with ibrutinib, which may reduce off-target inhibition and improve safety and efficacy outcomes

-~
-~
-~
-~

Large-scale, head-to-head trials in R/R CLL or WM consistently show improved safety outcomes with next-generation BTK inhibitors over ibrutinib. Zanubrutinib has also shown superior efficacy to ibrutinib in a phase III trial of patients with R/R CLL

Next-generation BTK inhibitors may be especially relevant to patients with cardiovascular comorbidities and/or patients requiring anticoagulants

We would appreciate your feedback! Please complete the post-meeting survey.

Thank you for your attention

