

Managing infection risk and vaccinations in CLL and WM

Anne-Sophie Michallet Léon Bérard Centre, Lyon, France FILO CLL subcommittee

Evolution of survival in CLL

Timeline of regulatory approval of major drugs for the treatment of CLL paralleled by improving survival of CLL patients

Complications in CLL and WM

Infections

- Hypogammaglobulinemia
- Neutropenia*
- T-cell immune deficiency

- Bacterial
- Viral
- Opportunists

Bone marrow failure

- Anemia thrombocytopenia
- Differentiating between bone marrow failure and autoimmune mechanism

Autoimmune cytopenias

- AIHA
- ITF
- Autoimmune erythroblastopenia

Richter transformation (DLBCL)

- Lymphadenopathy fever hypercalcemia
- PDL size increase

Increased incidence of other cancers?

Skin cancer - surveillance +++

Infections

Risk with long-standing CLL

Cause of up to 50% of deaths¹

Slide courtesy of Anne-Sophie Michallet.

^{*}Induced/enhanced by treatments. AIHA, autoimmune hemolytic anemia; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; ITP, immune thrombocytopenia; PDL, primary diffuse lymphadenopathies; WM, Waldenstrom's macroglobulinemia.

^{1.} Murru R et al. Ann Hematol 2024; 103 (5): 1655–1664.

Hypogammaglobulinemia

- Diagnosis¹
 - Approximately 20%
 - Advanced association
 - Associated with shorter survival?
- During follow-up²
 - + 11% more patients at 5 years
 - + 23% over 10 years
- Not an indication for specific treatment²
- Physiological mechanisms not clearly understood²

Serum electropherogram from a patient with hypogammaglobulinemia³

Immune deficiency in CLL and WM

- Multiple mechanisms
- Immune system damage
 - Adaptive
 - Humoral
 - Cellular
 - Innate

(B-)CLL, (B-cell) chronic lymphocytic leukemia; DC, dendritic cell; NK, natural killer; NLC, nurse-like cell; Treg, regulatory T cell; WM, Waldenstrom's macroglobulinemia.

Arruga F et al. Int J Mol Sci 2020; 21 (5): 1825.

Immune system corruption caused by CLL

Experimental approach: Mass cytometry nonsupervised analysis of lymphocytic B normal residual compartment and of the peripheral hematopoietic environment (DCs, subpopulation T, macrophages, NK, etc.)

Results analyzed with viSNE algorithms, PhenoGraph, and SPADE

- Attrition of B lymphopoiesis
- Tolerance breakdown responsible for a predisposition to autoimmunity and hypogammaglobulinemia

CLL tumor cells
leave an imprint on
the immune
system, leading to
developmental or
functional
abnormalities in
normal B
lymphocytes

(B-)CLL, (B-cell) chronic lymphocytic leukemia; DC, dendritic cell; NK, natural killer. Slide courtesy of Anne-Sophie Michallet.

Double penalty: CLL treatments (1/3)^{1,2}

- Bruton tyrosine kinase inhibitors (ibrutinib, zanubrutinib, acalabrutinib)
- BCL-2 inhibitors (venetoclax)
- CD20 inhibitors (rituximab, obinutuzumab, etc.)
- Phosphoinositide 3-kinase inhibitors (-lisib)

Pulmonary infections according to immunosuppression³

All these treatments target B cells +/- T cells

Е

Humoral and cellular deficiency

BCL2, B-cell lymphoma 2; CD20, cluster of differentiation 20; CLL, chronic lymphocytic leukemia.

^{1.} Shah M et al. Transpl Infect Dis 2024; 26 (3): e14283. 2. Huang IJ et al. Expert Opin Pharmacother 2024; 25 (13): 1759–1783. 3. Azoulay E et al. Intensive Care Med 2020; 46 (2): 298–314;

Double penalty: CLL treatments (2/3)

In the course of treatment, new qualitative and/or quantitative alterations are added and are generally associated with:

- Innate immunity (alkylating agents...)
- B lymphocytes (anti-CD20)
- T lymphocytes

Nonspecific bacterial risk

Increased hypogammaglobulinemia: risk of encapsulated bacterial and viral infections (respiratory and enteric viruses)

Risk of viral (herpes virus) and fungal (*Pneumocystis jirovecii* > filamentous and mucorales spp) reactivation

Double penalty: CLL treatments (3/3)

- BTKi: Hypo IgG and hyper IgA, combined inhibition of numerous tyrosine kinases (macrophages, neutrophils, etc.): filamentous risk (*Aspergillus*) > PJP
- BCL2i: Classic neutropenia (Grade 3–4 in >50% of cases) CD4 T lymphocytopenia?
- Idelalisib: Combined inhibition of LT activation: Increased PJP and CMV risks

BCL2i, B-cell lymphoma 2 inhibitor; BTKi, Bruton's tyrosine kinase inhibitor; CD4, cluster of differentiation 4; CLL, chronic lymphocytic leukemia; CMV, cytomegalovirus; Ig, immunoglobulin; LT, lymphotoxin; PJP, *Pneumocystis jirovecii* pneumonia.

^{1.} Burger JA et al. Nat Rev Clin Oncol 2018; 15 (8): 510-527.

CLL treatments: Risk of infections

Ibrutinib (Resonate 2)¹

Ibrutinib + venetoclax (Glow)²

Ibrutinib + venetoclax +/- obinutuzumab (GAIA)³

2%

17%

21%

Please note that the comparators used on this slide are not equivalent: e.g. Grade ≥3 upper respiratory tract infections¹ vs. Grade 3/4–5 infections and infestations² vs. Grade 3–4 infections.³ CD20, cluster of differentiation 20; CLL, chronic lymphocytic leukemia; NOS, not otherwise specified.

Treatment-related complications in WM

^{*}Side effects noted for each category in Castillo *et al.* 2020. †Includes risks associated with rituximab plus nucleoside analogs; cyclophosphamide, doxorubicin, vincristine, and prednisone; and bendamustine. AE, adverse event; BTK, Bruton's tyrosine kinase; IgM, immunoglobulin M; WM, Waldenstrom's macroglobulinemia. Castillo JJ *et al.* Lancet Haematol 2020; 7 (11): e827–e837.

Preventive measures (1/4)

Prevention of infections in hematologic malignancy patients receiving novel agents: The Swiss cheese model

12

Shah M *et al. Transpl Infect Dis* 2024; 26 (3): e14283.

Preventive measures (2/4)

Nonspecific preventive measures

- Daily hygiene
- Hand washing, hand sanitizer, wound disinfection, oral hygiene
- Wearing a mask in a confined environment
- Information for relatives (vaccinations, sick children, etc.)
- Protection against infections from pets (pet vaccinations, excreta...)
- Travel to high-risk areas: Remember to have a certificate of contraindication to yellow fever vaccination (Guyana...) if not previously vaccinated (single dose valid for life)

Prophylactic anti-infectives*

- Cotrimoxazole: Systematic from the start of treatment¹
 - Anti-pneumocystis and antibiotic activity (covers >90% of pneumococci and >80% of haemophilus)
 - Efficacy demonstrated but not absolute:
 - Duration not conditioned by CD4 count: Excluding HIV, more than 50% of PJP cases have CD4 >200/mm³ ²
- Valaciclovir: Systematic from start of treatment (aciclovir absorption 20% vs. 60%)
 - Anti-HSV and anti-VZV activity, but not anti-CMV
- Prophylactic antibiotic therapy: Controversial
 - As secondary prophylaxis in cases of bronchiectasis (anti-inflammatory and immunomodulatory action):
 - Azithromycin (25% pneumococcal resistance)
 250 mg × 3/week

^{*}Based on the speaker's own experience.

Preventive measures (3/4): Passive immunotherapy

Polyvalent immunoglobulin: Useful or futile?

Meta-analysis of documented infections: ↓51%

Mortality: No change

Polyvalent	immunog	lobulins:
------------	---------	-----------

EMA recommendations for substitution

Major supply shortage since 2021:

 Indications restricted by ANSM in agreement with many learned societies

	-						
Study or study group	Events	Total	Events	Total	Weight	M-H, fixed, 95% CI	M-H, fixed, 95% CI
Boughton 1995	7	24	11	18	14.0%	0.48 (0.23, 0.98)	-
Chapel 1994	17	41	38	41	42.2%	0.45 (0.31, 0.65)	-
Cooperative CLL 1988	21	41	39	40	43.8%	0.53 (0.39, 0.71)	
Total (95% CI)		106		99	100.0%	0.49 (0.39, 0.61)	♦
Total events	45		88				
Heterogeneity: Chi ² = 0.45, df = 2 (P =0.80); I ² = 0%						0.01 0.1 1 10 100	
Test for overall effect Z = 6.21 (<i>P</i> <0.00001)						ors experimental Favors control	

Control

Secondary immunodeficiencies (SID) in patients who suffer from severe or recurrent infections, ineffective antimicrobial treatment and either proven specific antibody failure (PSAF)* or serum IgG level of $<4\,$ g/L.

Secondary immunodeficiencies:

Déficits immunitaires secondaires :

■LLC*, LNH et autres avec défaut de production d'Ac (dosage pondéral des IgG <4g/L), associées à des infections à répétition survenus malgré une antibioprophylaxie bien conduite et entraînant une hospitalisation

Polyvalent IVIG

[UV]

Passage en RCP Reserved for vital emergencies and/or functional and/or in case of lack of alternative therapies

Risk ratio

Risk ratio

Preventive measures (4/4): Passive immunotherapy

- There are two different routes of administration for immunoglobulin treatment:^{1,2}
 - Intravenous (IV Ig monthly administration in a medical setting)
 - Subcutaneous (SC Ig weekly self-administration at home)
- Efficacy and safety are similar²
 - o SC: May improve quality of life and satisfaction
 - IV: Monthly administration leads to variations in serum IgG levels, resulting in low levels in the days prior to the next infusion and increased susceptibility to infection
- Common (≥1/100 to <1/10) to very common (≥1/10) adverse events are systemic, such as headache, fever, fatigue, and/or nausea²

Schematic illustrating plasma concentration of IgG during IV and SC administration²

Vaccinations and CLL

National multicentric retrospective study of COVID-19 vaccine response in CLL (N=530 patients)¹

Antibody response rate after dose 2 (265/506)

Antibody response rates in patients with CLL after two doses of COVID-19 vaccine²

^{*}P<0.01. **P<0.001. ***P<0.0001.

CLL, chronic lymphocytic leukemia; COVID-19, coronavirus disease 2019.

^{1.} Gerard V et al. Poster 09 presented at 43rd Congress of SFH 2023; Paris, France, March 29–31, 2023. 2. Bagacean C et al. Blood Adv 2022; 6 (1): 207–211. Slide courtesy of Anne-Sophie Michallet.

Vaccinations and CLL

National multicentric retrospective study of COVID-19 vaccine response in CLL (N=530 patients)

Predictors of humoral responses

Flu and COVID-19 vaccines

2024 vaccination schedule in France

- Autumn vaccination
- Quadrivalent (H1N1, H3N2, two B strains)
- Three vaccines on the market
- No immunological correlate of protection
- VE: 20%–80%
- Marketing authorization: >6 months of age
- Vaccination schedule: ≥65 years of age (and at risk)
- 100% reimbursement (if vaccinated)

- Autumn vaccination
- Monovalent JN.1 (95%)
- One vaccine on the market
- No need for serology
- VE: 95%
- Marketing authorization: >12 years of age
- Vaccination schedule: ≥65 years of age (and at risk)
- 100% reimbursement

Pneumococcal vaccine

In France, recommended for general population aged over 65 years

- Inactivated 20-valent polysaccharide conjugate vaccine (60% of circulating serotypes)¹
- Protective immunological correlate for children only:
 ≥0.35 μg/mL
- VE: Unknown (VE=85% with PCV13 in children)
- Duration of efficacy: Unknown (5 years?)
- Vaccination schedule: Adults at risk of pneumococcal infection
- History of PCV23 or PCV13: PCV20 if >1 year of age
- Previous PCV13 then PCV23 at S+8: PCV20 if >5 years of age
- 65% reimbursement (≈60€)

Evolution of the incidence of *pneumococcus* infections according to serotype in adults >64 years, between 2011–2022²

Shingles vaccine

- Inactivated adjuvanted recombinant glycoprotein E¹
- No immunological correlate of protection¹
- Clinical efficacy in hematological malignancies (30% CLL/NLH): 87% (65% in real-life ID)^{1,2}
 - \rightarrow Incidence of shingles within 1 year: 2/259 (0.8%) vs. 14/256 (5.5%)¹
 - → Significant reduction in post-herpetic pain
- HAS: ASMR III (moderate)
- Efficacy data preserved for 10 years in the general population
- Vaccination schedule: Adults ≥65 years and immunocompromised adults ≥18 years (ideally 2nd doses 14 days before chemotherapy, interval between two doses reduced to 1 month, respect a delay of 1 year if shingles or Zostavax[®] vaccination) but vaccination may be started as soon as clinical recovery is complete if the risk of recurrence is considered significant
- Reimbursement: 65% (based on 188€)

^{1.} Dagnew AF et al. Lancet Infect Dis 2019; 19 (9): 988–1000. 2. Zerbo O et al. Ann Intern Med 2024; 177 (2): 189–195. Slide courtesy of Anne-Sophie Michallet.

Take-home messages

Interventions to reduce infections in patients with hematological malignancies: A systematic review and meta-analysis

Population: Adult patients with chronic lymphocytic leukemia, myeloma or non-Hodgkin lymphoma

Intervention: Prophylactic immunoglobulin, antibiotics, vaccinations

Comparator: No intervention, placebo or standard care

Main outcomes: All-cause mortality or clinically documented infections

Summary

- Prophylactic immunoglobulin and vaccinations appear to reduce this risk
 of clinically documented infections, but findings should be interpreted with
 caution due to high risk of bias, heterogeneity and limited generalizability.
- Only one feasibility trial directly compared between interventions.

Future research

Future studies should compare different interventions, use standardised definitions of infection outcomes and incorporate cost-effectiveness analyses.

Merci!

Complications in WM

Symptom/complaint	Implications	Action
Fatigue, lack of energy	Anemia	Evaluate for anemia, including iron, folate, or cobalamin deficiency, hemolytic anemia (warm and cold antibodies), etc. Patients with iron deficiency may benefit from parenteral iron.
Constitutional symptoms	Disease progression	Obtain serum IgM levels and SPEP. Evaluate other causes of fever, night sweats, and unintentional weight loss.
Recurrent sinus and bronchial infections	Hypogammaglobulinemia	Antibiotic support. If patient refractory to antibiotics, required hospitalization, or infections were life threatening, consider IVIg replacement.
Headaches, blurry vision or visual loss, confusion, epistaxis	Hyperviscosity	Funduscopic examination, obtain serum IgM and serum viscosity levels. Consider emergent plasmapheresis for symptomatic hyperviscosity.
Easy bruising, bleeding diathesis	Thrombocytopenia; acquired vWD; acquired coagulation factor deficiency	Complete blood count, evaluate for immune thrombocytopenia or hypersplenism if indicated; consider evaluation for vWD; consider amyloidosis. Evaluate other bleeding diathesis with INR, PTT, and coagulation factor levels, as clinically indicated.
Progressive symmetrical numbness, tingling, burning, pain in feet and hands	lgM-related neuropathy; amyloidosis	Obtain EMG studies and neurology consultation. Obtain anti-MAG, and if negative anti-GM1 and anti-sulfatide IgM antibody studies. Consider fat pad biopsy and Congo red stain for amyloidosis. Evaluate other causes of neuropathy: diabetes, thyroid dysfunction, HIV infection, cobalamin deficiency, etc.
Raynaud-like symptoms, acrocyanosis, ulcers on extremities	Cryoglobulinemia; cold agglutinemia	Obtain cryoglobulins and cold agglutinins. In patients suspected of having cryoglobulins, IgM should be obtained in a warm bath to avoid cryoprecipitation. Consider emergent plasmapheresis.
Diarrhea, gastrointestinal cramping	Malabsorption	Endoscopy to evaluate small bowel, biopsy to evaluate for amyloidosis, IgM deposition, tumor involvement. Evaluate other causes of diarrhea.
Foamy urine, bipedal oedema	Kidney dysfunction	Obtain serum free light chains, 24-h urine protein, and consider kidney biopsy. Evaluate other causes of kidney dysfunction.
Urticaria, papules, dermatitis	Schnitzler syndrome, IgM / tumor cell infiltration, amyloid deposits	Skin biopsy, histological examination for tumor cell infiltration, stain for IgM, Congo red staining for amyloid. Evaluate other causes of rash.

EMG, electromyography; HIV, human immunodeficiency virus; IgM, immunoglobulin M; INR, International normalized ratio; IVIg, intravenous immunoglobulin; MAG, myelin-associated glycoprotein; PTT, partial thromboplastin time; SPEP, serum protein electrophoresis; vWD, von Willebrand disease; WM, Waldenstrom's macroglobulinemia.

Castillo JJ et al. Br J Haematol 2016; 17: 77–86.