First-line treatment for CLL: An evolving landscape

Carsten Utoft Niemann, MD, PhD, Associate Professor
Head of CLL Lab, Chair of Nordic CLL study group
Department of Hematology, Rigshospitalet, Copenhagen, Denmark
Hospital Santa Lúcia, Brasília, Brazil

<u>Carsten.utoft.niemann@regionh.dk;</u> <u>www.rigshospitalet.dk/CLL-lab</u>

Disclosures

Research support

 AbbVie, Alfred Benzon Foundation, Arvid Nilsson's Foundation, AstraZeneca, Copenhagen University Hospital, Danish Cancer Society, Janssen, Novo Nordisk Foundation, Persimune

P.I.

 AstraZeneca, BeiGene, Genmab, Janssen, Novartis, Roche

Consultancy/grants

 AbbVie, AstraZeneca, BeiGene, CSL Behring, Genmab, Gilead, Janssen, Novartis, Octapharma, Roche, Takeda

Collaborators

HOVON Arnon Kater, Amsterdam

GCLLSG Michael Hallek, Barbara Eichhorst, Köln

Nordic CLLSG Anders Österborg, Richard Rosenquist,

Karolinska, Stockholm

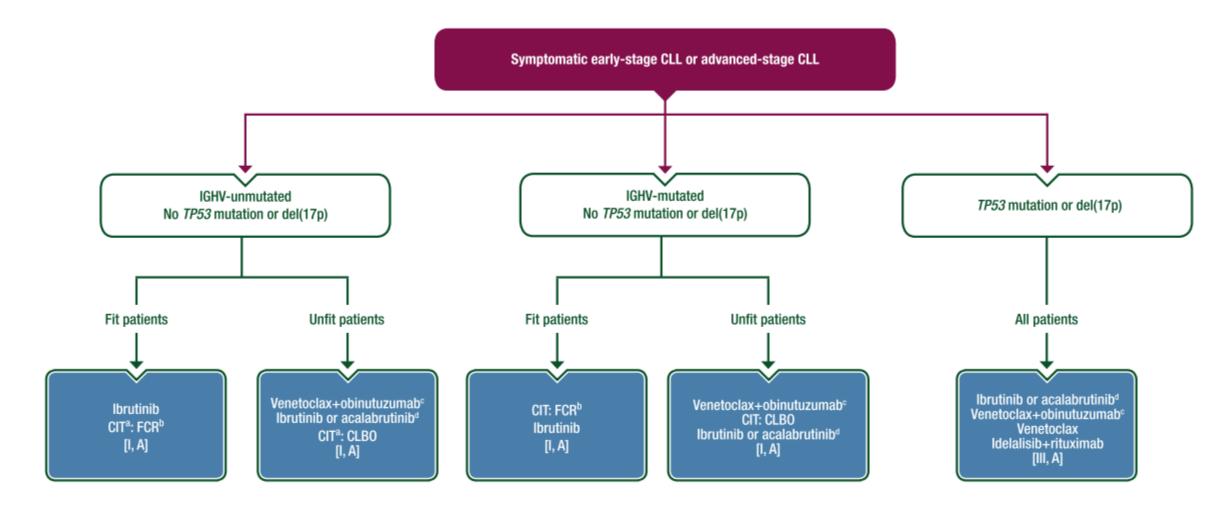
ERICLL.org Paolo Ghia

EuroMRD Christiane Pott

CLL-CLUE Sigrid Skånland, Rikshospitalet, Oslo

DFCI Mathew Davids, Boston

NHLBI, NIH Adrian Wiestner, Bethesda

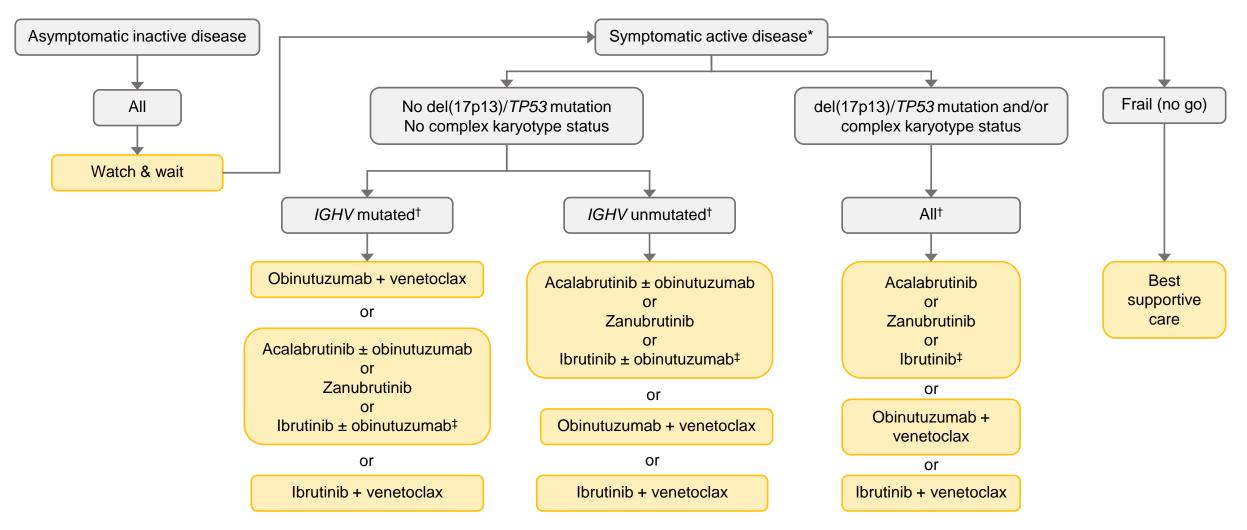

PERSIMUNE Jens Lundgren, Rigshospitalet

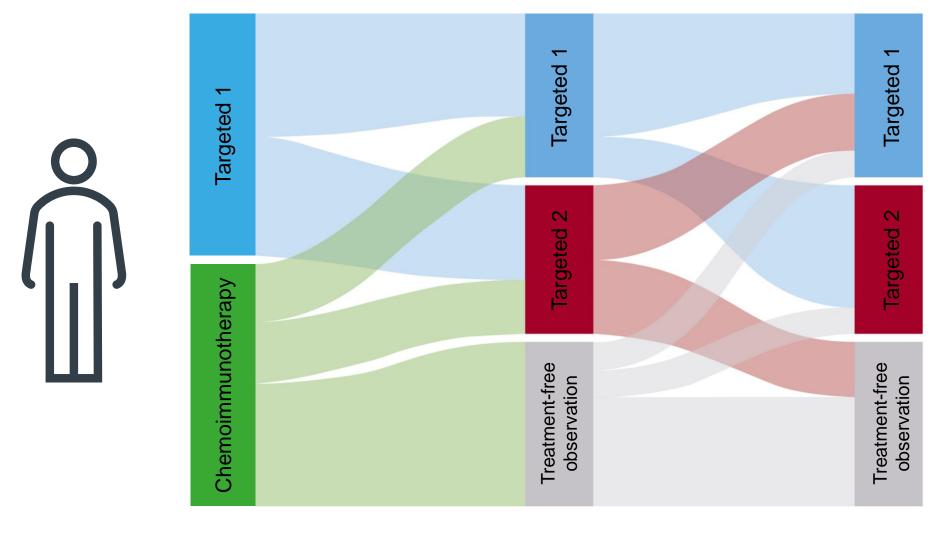
Genetics, Sisse Ostrowski, Rigshospitalet, Henrik

COVID Hjalgrim, Danish Cancer Society

First-line CLL: ESMO guidelines are already personalized

^aCIT as alternative treatment, only if reasons against treatment with targeted therapies or non-availability. ^bBR might be considered alternatively in patients >65 years. ^cIf available. ^dIf approved and available. BR, bendamustine and rituximab; CIT, chemoimmunotherapy; CLBO, chlorambucil plus obinutuzumab; CLL, chronic lymphocytic leukemia; ESMO, European Society for Medical Oncology; FCR, fludarabine, cyclophosphamide and rituximab; IGHV, immunoglobulin heavy chain variable. Eichhorst B *et al. Ann Oncol* 2021; 32 (1): 23–33.



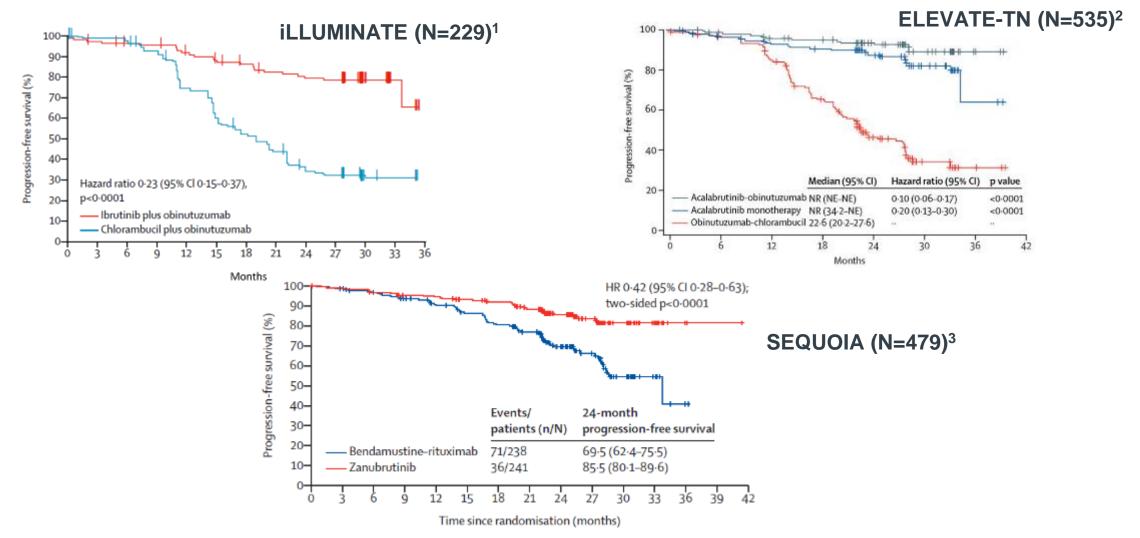

First-line CLL: Onkopedia 2023 guidelines

^{*}Active disease according to the iwCLL 2018 criteria; †The sequence of therapies represents one possibility. ‡If acalabrutinib or zanubrutinib are contraindicated or not available, ibrutinib (± obinutuzumab) remains a therapy option, taking into account an increased risk of cardiac side effects. Acalabrutinib and zanubrutinib have not been systematically evaluated in younger/fit patients as first-line therapy.

Onkopedia guidelines: Chronic Lymphocytic Leukemia (CLL), 2023. Available at: https://www.onkopedia.com/de/onkopedia/guidelines/chronische-leukaemie-cll. Accessed March 2023.

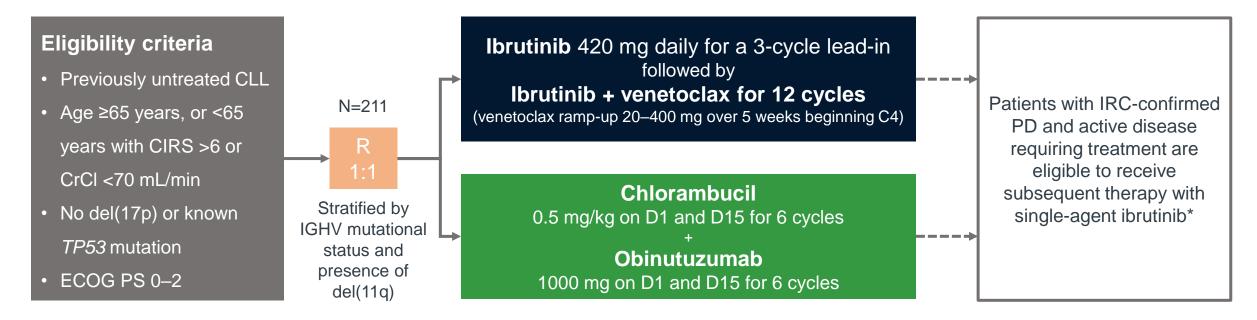
Treatment trajectories in CLL: Sequencing?

State of the art diagnostic work-up in CLL! iwCLL guidelines: Baseline evaluation of patients


Diagnostic test	General practice	Clinical trial
Tests to establish the diagnosis CBC and differential count	Always	Always
Immunophenotyping of peripheral blood lymphocytes	Always	Always
Assessment before treatment		
History and physical, performance status	Always	Always
CBC and differential count	Always	Always
Marrow aspirate and biopsy	When clinically indicated (unclear cytopenia)	Desirable
Serum chemistry, serum immunoglobulin, and direct antiglobulin test	Always	Always
Chest radiograph	Always	Always
Infectious disease status	Always	Always
Additional tests before treatment		
Molecular cytogenetics (FISH) for del(13q), del(11q), del(17p), add(12) in peripheral blood lymphocytes	Always	Always
Conventional karyotyping in peripheral blood lymphocytes (with specific stimulation)	NGI*	Desirable
TP53 mutation	Always	Always
IGHV mutational status	Always	Always
Serum β ₂ -microglobulin	Desirable	Always
CT scan of chest, abdomen, and pelvis	NGI	Desirable
MRI, PET scans	NGI	NGI
Abdominal ultrasound†	Possible	NGI

^{*}Conventional karyotyping in peripheral blood lymphocytes (with specific stimulation) may be useful before therapy, if established methodology is available.

[†]Used in some countries to monitor lymphadenopathy and organomegaly.

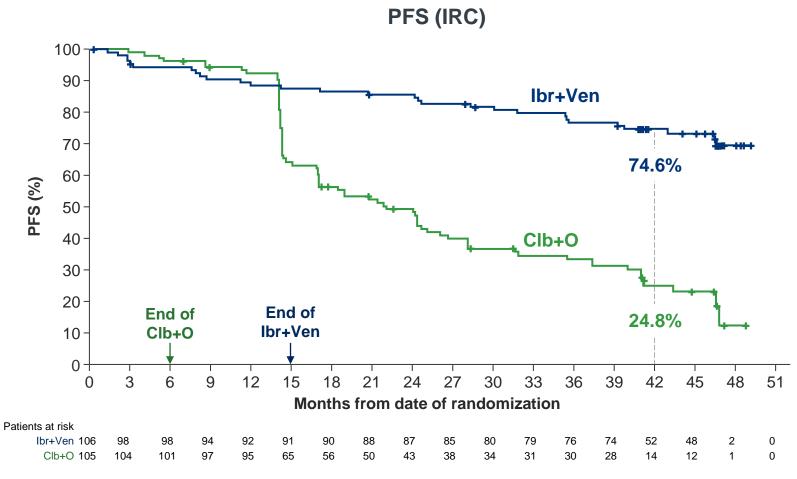

CBC, complete blood count; CLL, chronic lymphocytic leukemia; CT, computerized tomography; FISH, fluorescence in situ hybridization; IGHV, immunoglobulin heavy chain variable; iwCLL, international workshop on CLL; MRI, magnetic resonance imaging; NGI, not generally indicated; PET, positron emission tomography. Hallek M et al. Blood 2018; 131 (25): 2745–2760.

First-line treatment with BTK inhibitors Progression-free survival

GLOW Phase 3 study (NCT03462719)

First-line ibrutinib plus venetoclax vs. chlorambucil plus obinutuzumab

Primary end point: IRC-assessed PFS


Key secondary end points: uMRD rates, response rates, overall survival, time to next treatment, and safety

- Current analysis
 - Median study follow-up of 46 months (range: 1.7–51.7)
 - MRD assessed in peripheral blood in responders by NGS

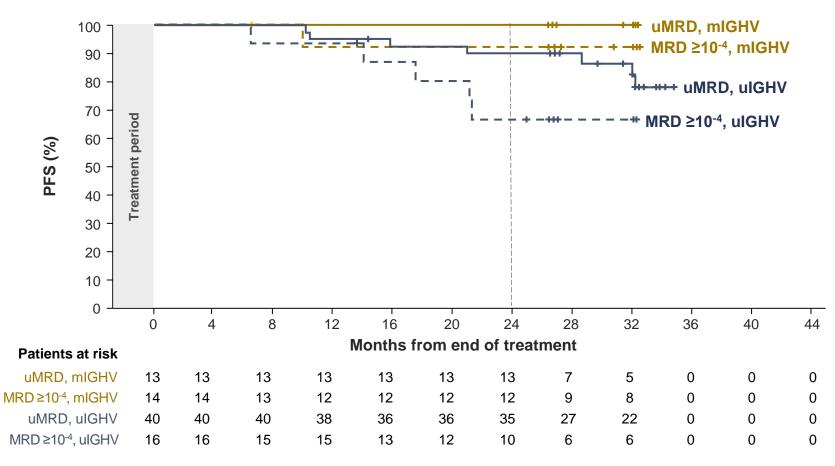
^{*}Ibrutinib was provided by the Sponsor to patients from both arms who were eligible to participate in the Subsequent Therapy Phase of the study.

C, cycle (28 days); CIRS, Cumulative Illness Rating Scale score; CLL, chronic lymphocytic leukemia; CrCl, creatinine clearance; D, day; ECOG PS, Eastern Cooperative Oncology Group performance status; IGHV, immunoglobulin heavy chain variable; IRC, independent review committee; MRD, minimal residual disease; NGS, next-generation sequencing; PD, progressive disease; R, randomization; uMRD, undetectable MRD. Niemann CU et al. Oral presentation at ASH 2022; New Orleans, LA, USA, December 10–13, 2022 (Abstract 93).

GLOW: PFS by IRC remained superior for lbr+Ven versus Clb+O with 4 years of study follow-up

Ibr+Ven reduced the risk of progression or death by 79% versus Clb+O

HR (95% CI): 0.214 (0.13–0.334);
 P<0.0001


Estimated 3.5-year PFS rates:

- 74.6% for lbr+Ven
- 24.8% for Clb+O

Median study follow-up: 46 months

GLOW: Ibr+Ven PFS was ≥90% at two years post-treatment for patients with uMRD at EOT+3, regardless of IGHV status

Ibr+Ven PFS (IRC) from end of treatment

Estimated PFS at 2 years post-treatment for **uIGHV** CLL:

 90% for uMRD at EOT+3 versus 67% for MRD ≥10⁻⁴

Estimated PFS at 2 years post-treatment for mIGHV CLL:

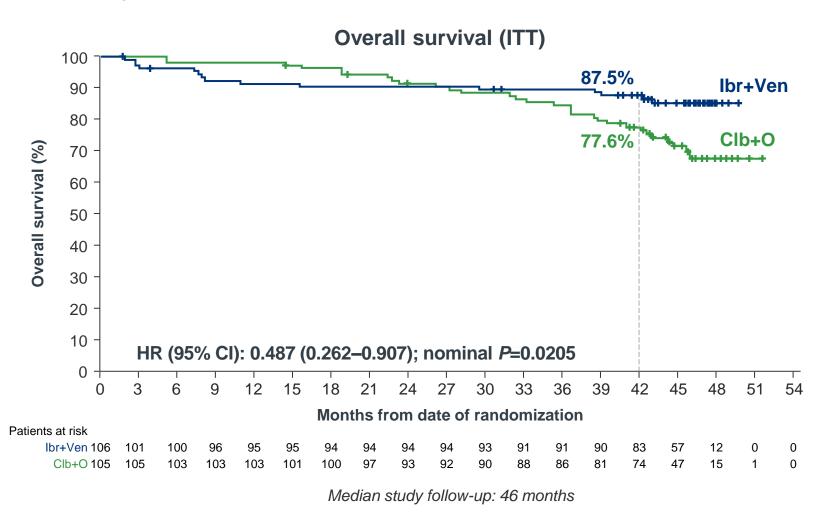
 >90% regardless of MRD status at EOT+3

Median study follow-up: 46 months

EOT+3, EOT plus 3 months; Ibr, ibutinib; IGHV, immunoglobulin heavy chain variable; IRC, independent review committee; mIGHV, mutated IGHV; MRD, minimal residual disease; PFS, progression-free survival; uIGHV, unmutated IGHV; uMRD, undetectable minimal residual disease; Ven, venetoclax.

First-line lbr+Ven in frail patients: Early ibrutinib toxicity? Infections still occur

	Durin	g treatm	During follow-up		
Death from any cause	I+V (n=106)		Clb+O	I+V	Clb+O
	Ibr lead-in	I+V	(n=105)	(n=106)	(n=105)
Total, n	4	3	2	4	10
Infections and infestations	1	-	1	2*	6*
Cardiac disorders	2†	-	-	-	2
General disorders (sudden death)	-	2	-	1 [‡]	-
Neoplasm	1	-	-	-	-

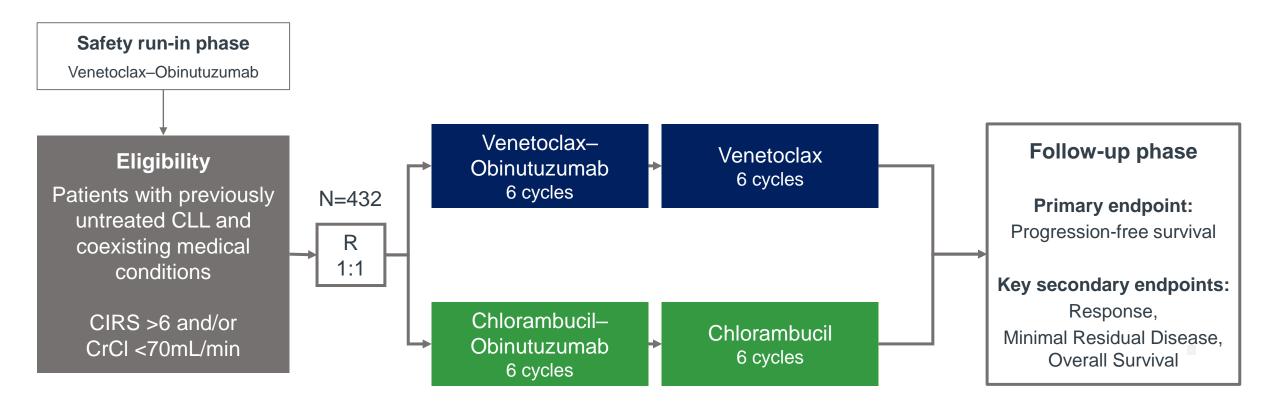

	l+ (n=1		Clb+O (n=105)		
Median treatment exposure – months (range)	13.8 (0.7	7–19.5)	5.1 (1.8	3–7.9)	
Adverse events (AE) – n (%)	Grade 3/4	Grade 5	Grade 3/4	Grade 5	
Patients with 1 or more AE	73 (68.9)	7 (6.6)	71 (67.6)	2 (1.9)	
Neutropenia [§]	37 (34.9)	0	52 (49.5)	0	
Infections and infestations ^{II}	16 (15.1)	2 (1.9)¶	11 (10.5)	1 (1.0)	

Please note that these data are a selection of outcomes and are not representative of the overall safety profile of the study treatments.

*Includes 5 COVID-19—related deaths: 1 in the I+V arm, 4 in the Clb+O arm. [†]1 patient listed as cardiac event had 3 causes of death: sinus node dysfunction, cardiac failure, pneumonia. [‡]An additional sudden death occurred in the ibrutinib-venetoclax arm more than 30 days after last dose of study medication. [§]Includes "neutrophil count decreased." Rates of febrile neutropenia (grade ≥3): 1.9% for I+V versus 2.9% for Clb+O. [∥]Includes multiple preferred terms. Only pneumonia (grade ≥3) occurred in 5% or more of patients in the ibrutinib-venetoclax (7 [6.6%]) and chlorambucil-obinutuzumab (6 [5.7%]) arms. [¶]Both Grade 5 AEs were pneumonia.

AE, adverse event; Clb, chlorambucil, I, ibrutinib; Ibr, ibrutinib; O, obinutuzumab; Ven, venetoxlax; V, venetoclax. Kater AP *et al. NEJM Evidence*. 2022; 1 (7): EVIDoa2200006.

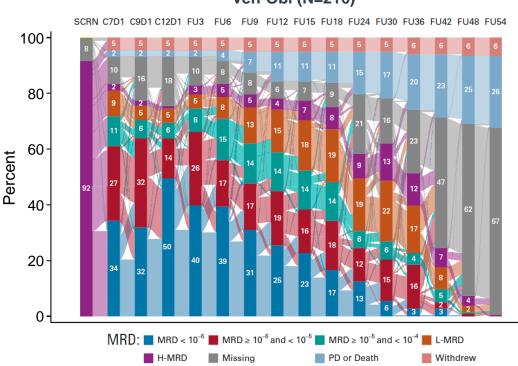
GLOW: Ibr+Ven improved overall survival versus Clb+O with 4 years of study follow-up

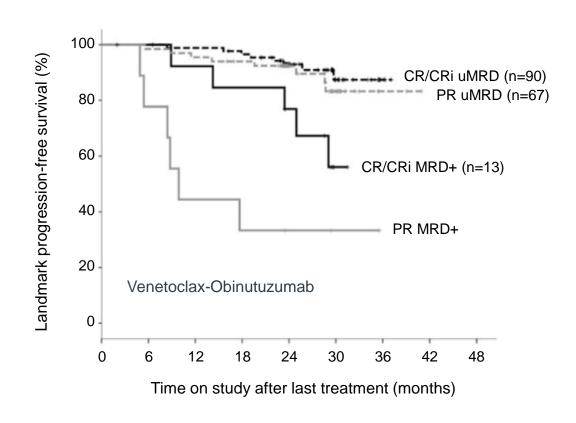

- In the Clb+O arm, 39/41 patients requiring subsequent treatment received a BTKi or venetoclax
- The majority of deaths in the Clb+O arm occurred while off any treatment
- More infection-related deaths were seen in the Clb+O arm

Causes of death

n (%)	Ibr+Ven (N = 106)	Clb+O (N = 105)
PD	1 (0.9)	2 (1.9)
Infections	4 (3.8)	11 (10.5)
Other*	10 (9.4)	17 (16.2)
TOTAL	15 (14.2)	30 (28.6)

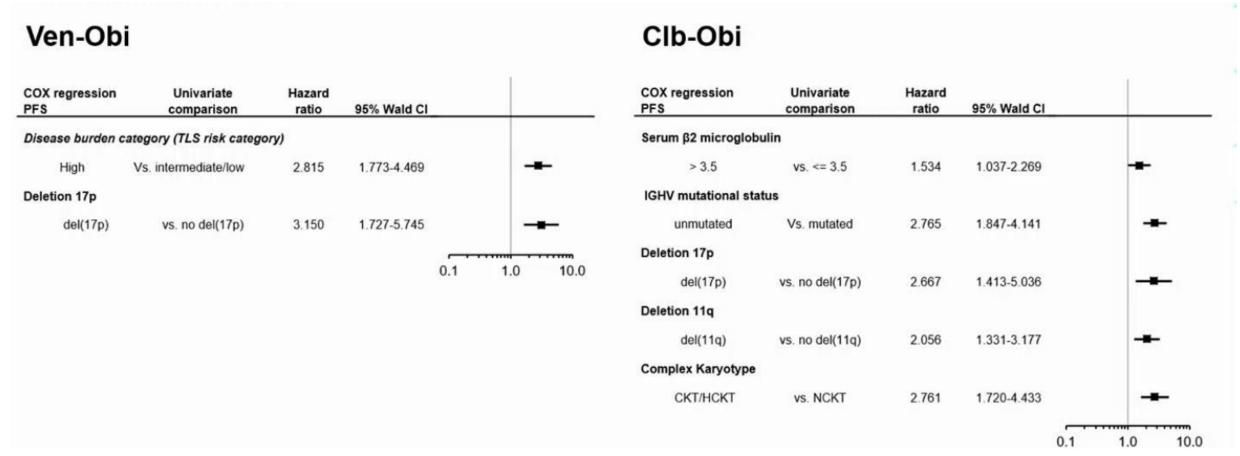
^{*}Cause and number (Ibr+Ven arm, Clb+O arm) of "other" deaths: general/unknown (4, 5), cardiac (2, 4), central nervous system (2, 3), neoplasm (1, 3), euthanasia (1, 0), hepatobiliary (0, 1), respiratory (0, 1). BTKi, Bruton's tyrosine kinase inhibitor; CI, confidence interval; Clb; chlorambucilHR, hazard ratio; Ibr, ibrutinib; ITT, intention-to-treat; O, obinutuzumab; PD, progressive disease. Niemann CU *et al.* Oral presentation at ASH 2022; New Orleans, LA, USA, December 10–13, 2022 (Abstract 93)


CLL14 trial: First-line Ven-Obi versus Clb-Obi in frail CLL patients


CLL14 trial: First-line Ven-Obi in CLL uMRD decreases over time but correlates with PFS

MRD levels from baseline to latest follow up¹

PFS by MRD status and clinical response at EOT²


C, cycle; CLL, chronic lymphocytic leukemia; CR, complete response; CRi, complete remission with incomplete bone marrow recovery; D, day; EOT, end of treatment; FU, follow up; H-MRD, high MRD; L-MRD, low MRD; MRD, minimal residual disease; Obi obinutuzumab; PFS, progression-free survival; PD, progressive disease; PR, partial response; SCRN, screening; uMRD, undetectable MRD; Ven, venetoclax.

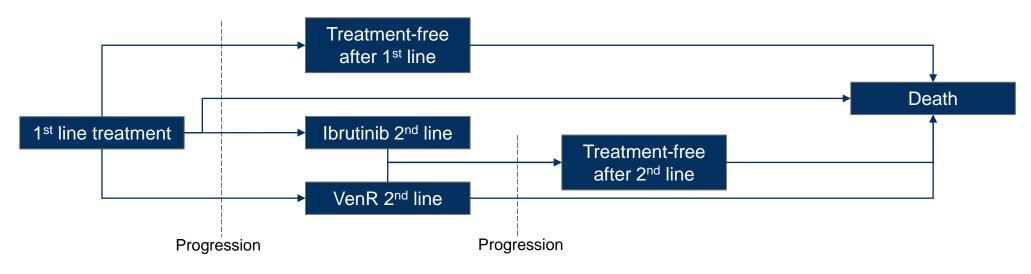
1. Al-Sawaf O et al. J Clin Oncol 2021; 39 (36): 4049–4060. 2. Fischer K et al. Oral presentation at ASH; Orlando, FL, USA, December 7–10, 2019.

CLL14 trial: First-line Ven-Obi versus Clb-Obi in frail CLL patients

Progression-free survival

Multivariable models

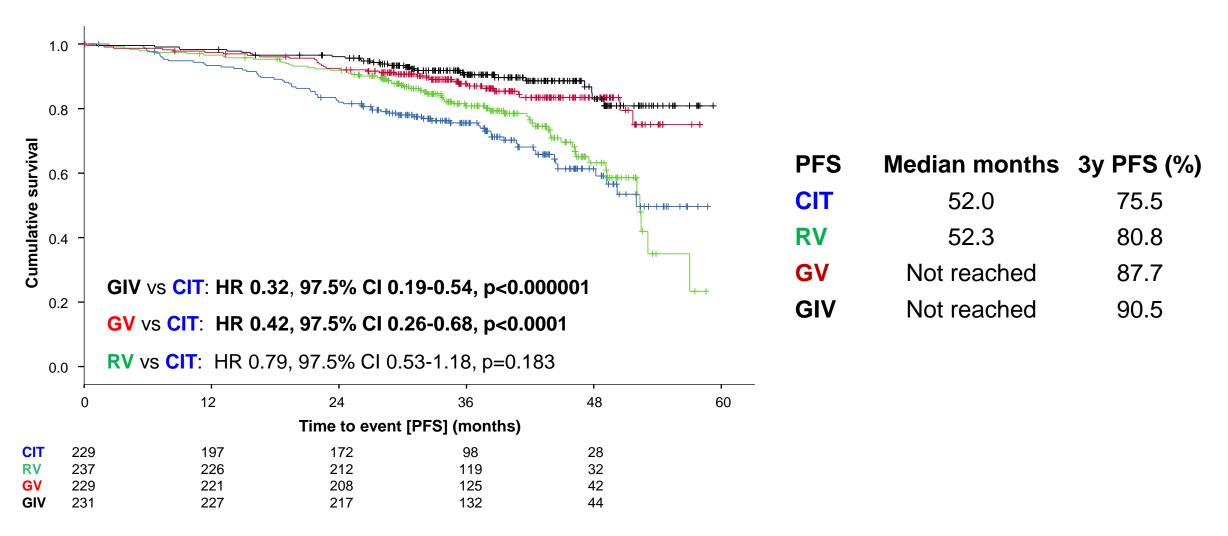
CLL 14: First-line Ven-Obi in frail CLL patients Infections still occur

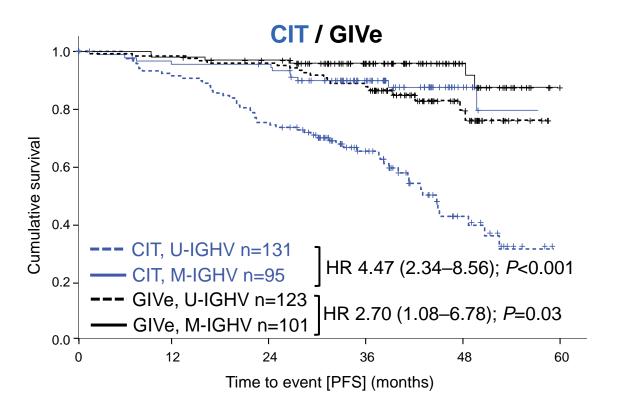

Fatal (Grade 5) AEs*

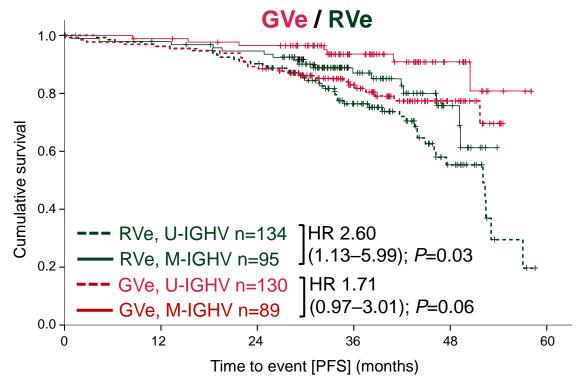
n (%)	Venetoclax-Obinutuzumab (N=212)†	Chlorambucil-Obinutuzumab (N=214)
Grade 5 event during treatment	5 (2.4) [‡]	4 (1.9)
Infections and infestations	4 (1.9)	3 (1.4)
Grade 5 event after completion of treatment	11 (5.2)	4 (1.9)
Cardiac disorders	3 (1.4)	1 (0.5)
Infections and infestations	4 (1.9)	0

Non-fatal (Max. Grade 3 or 4) AEs*

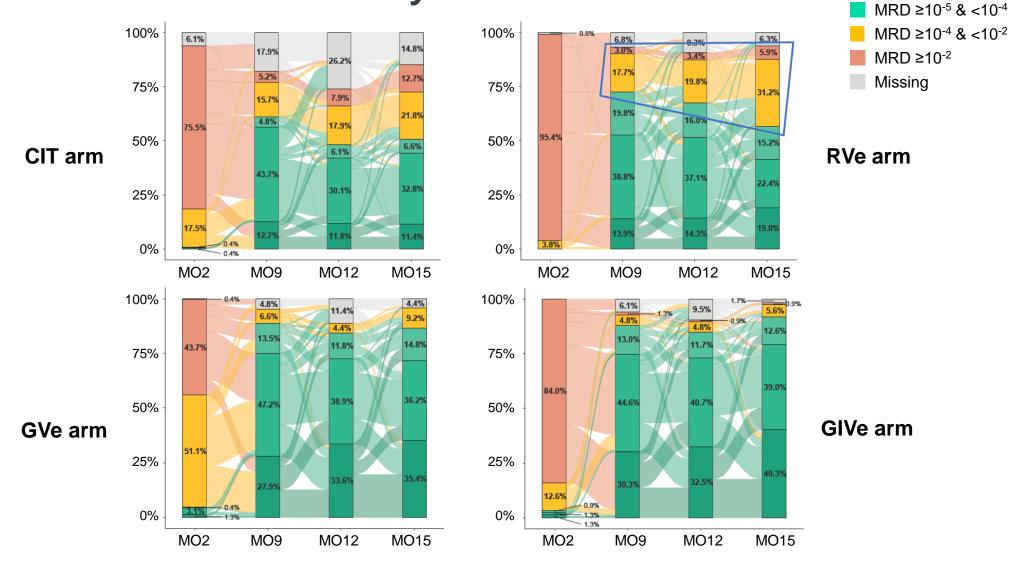
n (%)	Venetoclax-Obinutu	zumab (N=212) [†]	Chlorambucil-Obir	nutuzumab (N=214)				
	Max. Grade 3	Max. Grade 3 Max. Grade 4 Max. Gra						
Grade 3 or 4 event occurring in ≥3% of the patients in either treatment group [‡]								
Infections and infestations	31 (14.6)	6 (2.8)	31 (14.5)	1 (0.5)				
Pneumonia	8 (3.8)	1 (0.5)	8 (3.7)	0				


First-line CLL: Health economics Taking the next line of treatment into account


		VenO		ClbO			ICER
	Cost (EUR)	QALY	Life-years	Cost (EUR)	QALY	Life-years	(EUR/QALY)
Base case	205,590	5.11	7.54	199,305	3.80	6.12	4,808
Only 1st line	110,606	4.43	6.04	54,453	2.88	4.02	36,213
Ibrutinib in 2 nd line	235,272	5.03	7.18	244,550	3.68	5.58	VenO dominates
VenR in 2 nd line	175,907	5.18	7.89	154,060	3.92	6.66	17,261
15% discount on Ven	194,907	5.11	7.54	194,944	3.80	6.12	VenO dominates


ClbO, chlorambucil plus obinutuzumab; CLL, chronic lymphocytic leukemia; ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life-year; Ven, venetoclax; VenO, venetoclax plus obinutuzumab; VenR, venetoclax plus rituximab.

GAIA/CLL13 trial co-primary endpoint: Progression-free survival Median FU 38.8 months (range: 0.0–59.2)



GAIA/CLL13: Unmutated IGHV associated with shorter PFS for all treatment arms

GAIA CLL13 trial: PB MRD dynamics

CIT, chemoimmunotherapy; GIVe, obinutuzumab plus ibrutinib plus venetoclax; GVe, obinutuzumab plus venetoclax; MO, month; MRD, minimal residual disease; NE, not evaluable; PB, peripheral blood; RV, rituximab plus venetoclax; uMRD, undetectable MRD. Fürstenau M et al. Oral presentation at ASH 2021; Atlanta, GA, USA, December 11–14, 2021.

uMRD (<10⁻⁵)

uMRD (<10⁻⁴ but NE for <10⁻⁵)

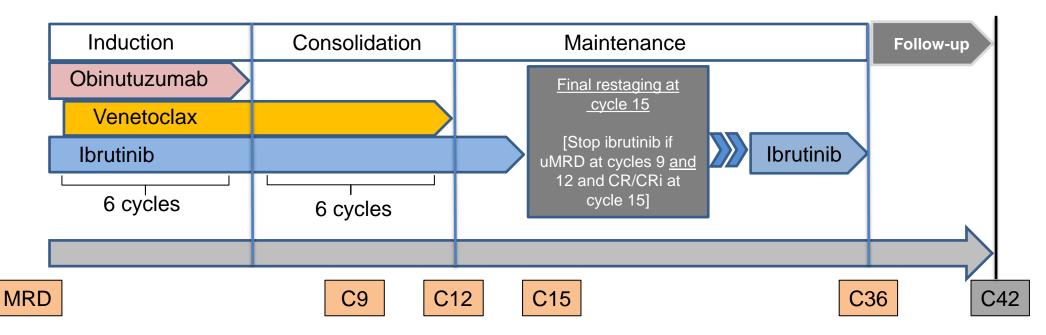
GAIA/CLL13 trial: Infections with first-line triplet therapy

AEs, Grade ≥3	CIT (n=216)	RV (n=237)	GV (n=228)	GIV (n=231)
Anemia	16 (7.4)	9 (3.8)	11 (4.8)	9 (3.9)
Neutropenia	113 (52.3)	109 (46.0)	127 (55.7)	112 (48.5)
Thrombocytopenia	22 (10.2)	10 (4.2)	42 (18.4)	37 (16.0)
Febrile neutropenia	24 (11.1)	10 (4.2)	7 (3.1)	18 (7.8)
Infections	43 (19.9)	27 (11.4)	32 (14.0)	51 (22.1)
Tumor lysis syndrome	9 (4.2)	24 (10.1)	20 (8.8)	15 (6.5)
Bleeding events	1 (0.5)	1 (0.4)	1 (0.4)	4 (1.7)
Atrial fibrillation	1 (0.5)	1 (0.4)	0 (0.0)	6 (2.6)

CLL2GIVe: Study design and treatment disposition

Phase 2 trial, N=41

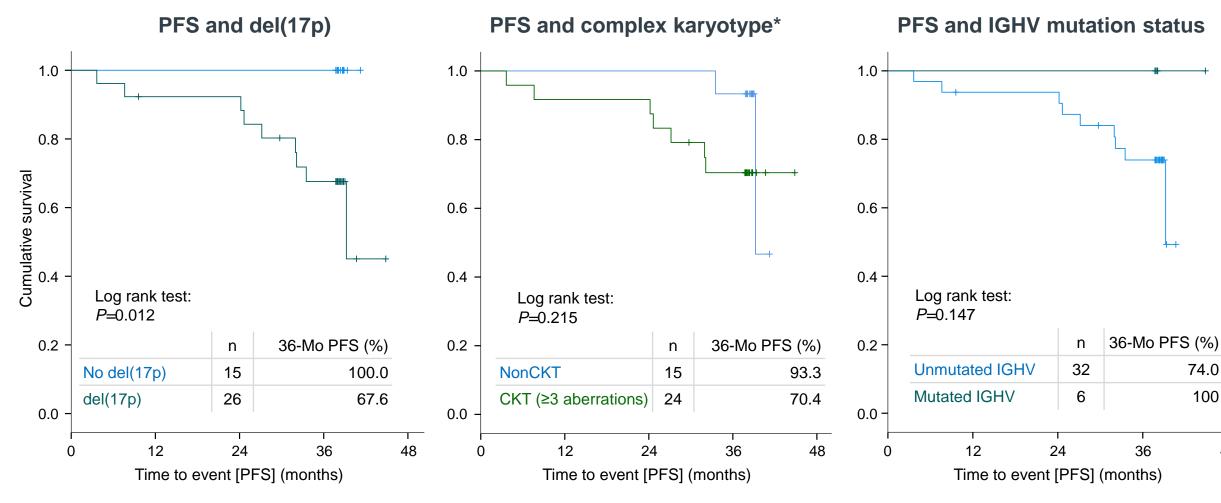
Eligibility:


- Previously untreated CLL
- Del(17p) and/or TP53^{mut}
- Adequate renal function (CrCl >50 mL/min)

Primary endpoint:

CR rate at C15

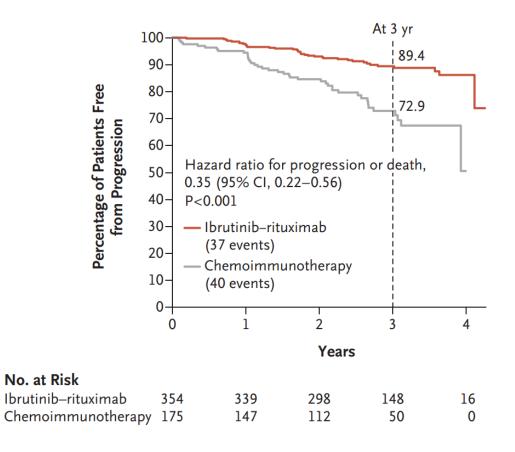
Secondary endpoints:


- PFS, OS, EFS
- Safety
- MRD levels

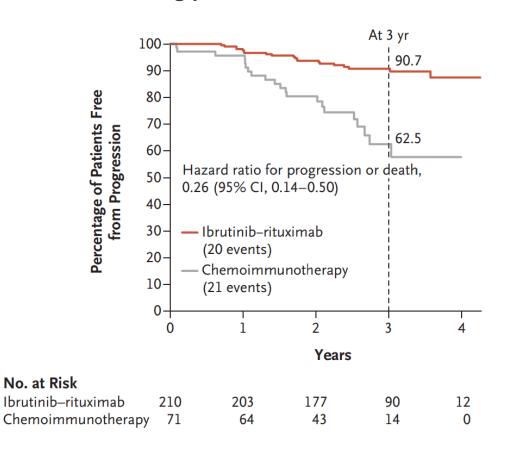
C, cycle; CLL, chronic lymphocytic leukemia; CRi, complete response with incomplete hematological recovery; CR, complete response; CrCl, creatinine clearance; EFS, event-free survival; MRD, minimal residual disease; OS, overall survival; PFS, progression-free survival; uMRD, undetectable minimal residual disease.

Huber H et al. Oral presentation at ASH 2022; New Orleans, LA, USA, December 10–13, 2022 (Abstract 343).

CLL2GIVe: Efficacy resultsCorrelation between PFS and genetics

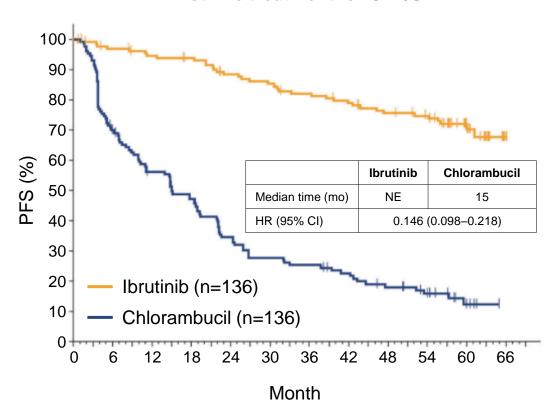


^{*}Two patients were not evaluable.

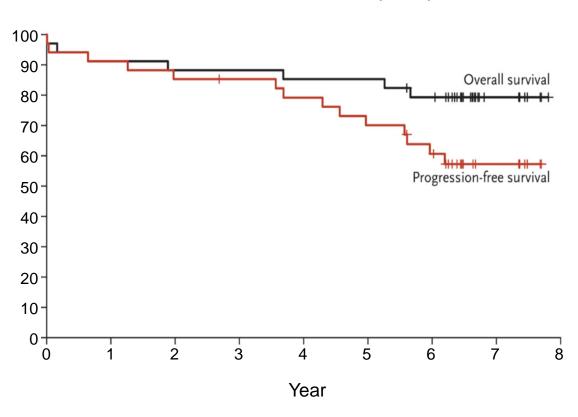

48

First-line ibrutinib in fit patients with CLL: Rtx-lbr vs. FCR

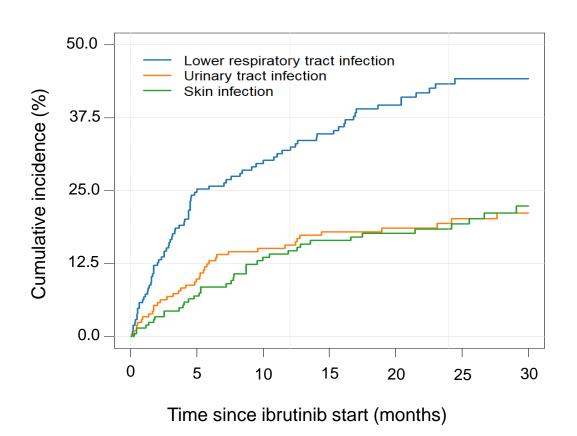
PFS among all patients

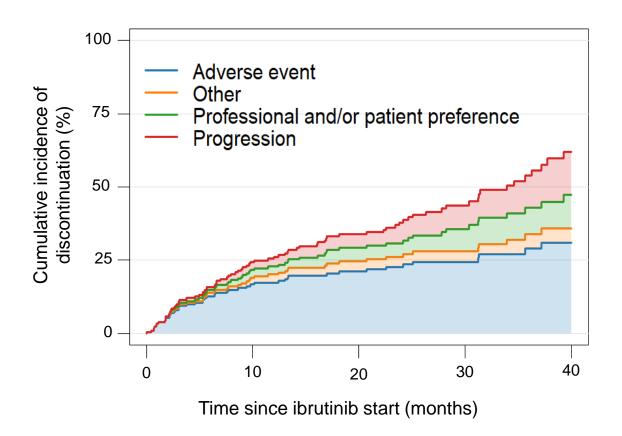


PFS among patients with unmutated IGHV



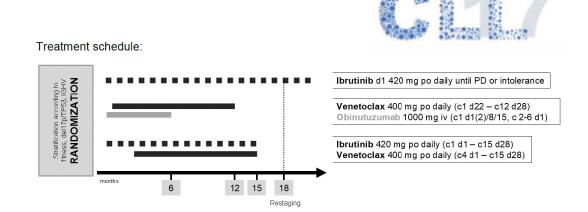
First-line ibrutinib treatment: Long-term outcomes


PFS with single-agent ibrutinib vs. chlorambucil in first-line treatment for CLL/SLL¹



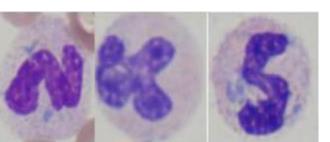
OS and PFS with ibrutinib in first-line treatment for CLL with *TP53* alterations (N=34)²

Ibrutinib: Danish real-world data Infections, adverse events, discontinuations



Personalized CLL: Treatment patterns and future perspectives

First-line CLL


- Patients with CLL and mutated IGHV have excellent outcomes on CIT
- Patients with CLL and unmutated IGHV should receive BCL2i- or BTKi-based therapy
- TP53: maybe a BTKi is better; >1 aberration: consider a clinical trial
- FISH and IGHV testing should be performed before treatment
- Continuous treatment
- Head-to-head comparison of fixed-duration versus continuous regimens in the CLL17 trial is awaited¹

Nordic CLL Study Group

Ander Österborg
Richard Rosenquist
Vesa Lindström
Mattias Mattsson
Robert Schou Pedersen
Hoa Tran
Andrea Lenartova
Sigrid Skånland
Signý Sveinsdóttir

<u>Carsten.utoft.niemann@regionh.dk</u> <u>www.rigshospitalet.dk/CLL-lab</u>

CLL Laboratory

Combining translational, epidemiological and clinical research to develop individually tailored supportive care and CLL specific treatment

Caspar da Cunha-Bang Casper M Frederiksen Christian Brieghel **Emelie Rotbain** Ernesto Gargiulo Esben M Packness Hanna Hassouneh Hashim Elhussein Laurent Tellier Lone Bredo Pedersen Mehdi Parviz Noomi Vainer Rudi Agius Rebecca Svanberg Tereza Faitova