CLL and the immune system: Infections, vaccines, and autoimmune disease

Professor Carol Moreno Hospital de la Santa Creu i Sant Pau, Spain

Disclosures

- Advisor/Consultant/Speaker: Janssen, AbbVie, Pharmacyclics (an AbbVie company), Roche, BeiGene, AstraZeneca, Bristol Myers Squibb, Lilly, Adaptive
- Research grants: Janssen, AbbVie, AstraZeneca, Deutsche José Carreras Leukämie-Stiftung,
 III Carlos Institute

CLL and immune status

BLOOD

The Journal of Hematology

APRIL, 1967

VOL. XXIX, NO. 4, PART II

Special Article

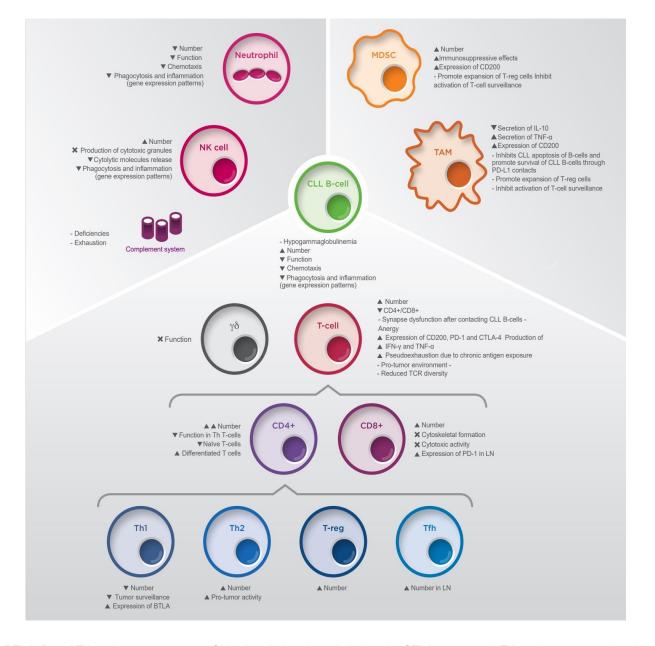
Chronic Lymphocytic Leukemia—an Accumulative Disease of Immunologically Incompetent Lymphocytes

By WILLIAM DAMESHEK

CLL and immune status

BLOOD

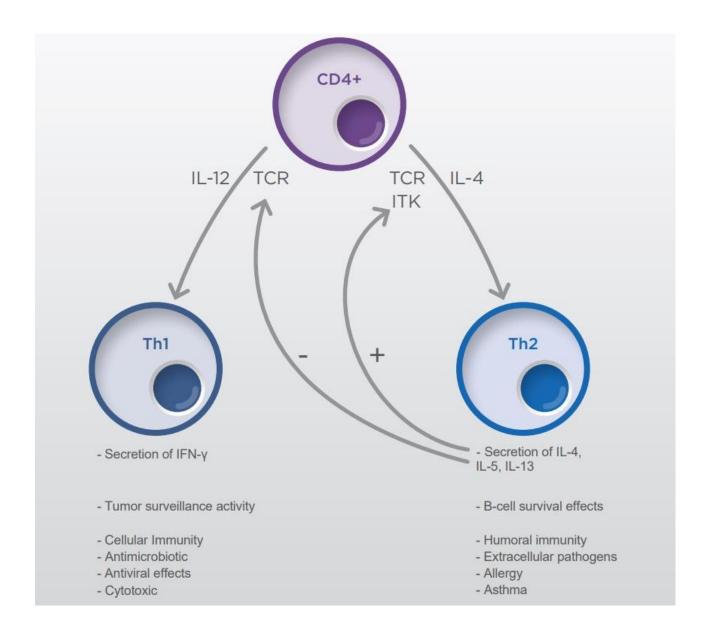
The Journal of Hematology


APRIL, 1967

VOL. XXIX, NO. 4, PART II

Special Article

Chronic Lymphocytic Leukemia—an Accumulative Disease of Immunologically Incompetent Lymphocytes


By WILLIAM DAMESHEK

Immune disorders are intrinsic to CLL

BTLA, B and T lymphocyte attenuator; CLL, chronic lymphocytic leukemia; CTLA-4, cytotoxic T lymphocyte—associated antigen 4; IFN-γ, interferon gamma; IL, interleukin; LN, lymph node; MDSC, myeloid-derived suppressor cell; NK, natural killer; PD-1, programmed death receptor-1; PD-L1, programmed death-ligand 1; TAM, tumor-associated macrophage; TCR, T-cell receptor; Tfh, T follicular helper cell; Th, T helper cell; TNF-α, tumor necrosis factor alpha; T-reg, regulatory T cell.

Moreno C et al. J Exp Clin Cancer Res 2021; 40 (1): 321.

Equilibrium between Th1 and Th2 subgroup can impact immune tumor surveillance

Disease-related

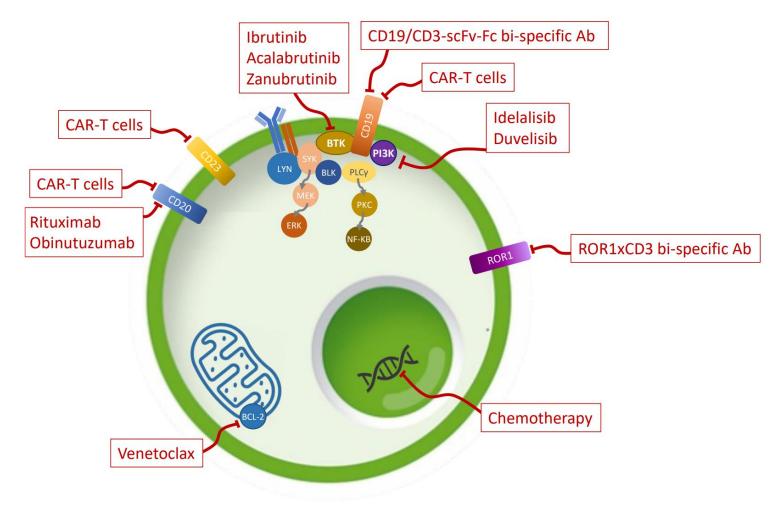
Immune dysfunction

Clinical consequences

Autoimmune manifestations Secondary neoplasias Infections

Secondary immunodeficiency associated with chemo(immuno)therapy

Humoral immunosuppression and defects in T cells


Study	Regimen	Key findings
Beyer <i>et al.</i> 2005 ¹	Fludarabine	↓ T _{reg} frequency and inhibitory function
Ysebaert et al. 2010 ²	FCR	 ↓ CD4+ and CD8+ T cells Low CD4+ T-cell count post-therapy correlates with MRD
Gassner et al. 2011 ³	Fludarabine– cyclophosphamide	 ↓ T cells due to cytotoxicity Surviving T cells mainly Th1, with high proliferative potential
Martínez-Calle et al. 2019 ⁴	Bendamustine- rituximab	 Delayed CD4+ T cell recovery ↑ Risk of serious infection

FCR, fludarabine–cyclophosphamide–rituximab; MRD, minimal residual disease; Th1, type 1 T helper cell; T_{reg}, regulatory T cell.

^{1.} Beyer M et al. Blood 2005; 106 (6): 2018–2025. 2. Ysebaert L et al. Leukemia 2010; 24 (7): 1310–1316. 3. Gassner FJ et al. Cancer Immunol Immunother 2011; 60 (1): 75–85.

^{4.} Martínez-Calle N et al. Br J Haematol 2019; 184 (6): 957-968.

Therapeutic strategies for CLL

Ab, antibody; BCL-2, B-cell lymphoma 2; BLK, tyrosine-protein kinase; CAR-T, chimeric antigen receptor T; CLL, chronic lymphocytic leukemia; ERK, extracellular signal-regulated kinase; Fc, fragment crystallizable; MEK, mitogen-activated protein kinase kinase; NF-κB, nuclear factor kappa B; Pl3K, phosphoinositide 3-kinase; PKC, protein kinase C; PLCγ, phospholipase C gamma; ROR1, receptor tyrosine kinase—like orphan receptor 1; scFv, single-chain variable fragment; SYK, spleen tyrosine kinase.

Moreno C et al. J Exp Clin Cancer Res 2021; 40 (1): 321.

Infections

- Major cause of morbidity and mortality in CLL
- Multifactorial
 - Patient-related factors (infection history, predisposition [i.e. bronchiectasis])
 - Disease-related immune defects
 - Hypogammaglobulinemia and others (T cells, complement, etc.)
 - Treatment-related immunosuppression*
 - Viral infections (e.g. herpes virus)
 - Opportunistic infections

Infections associated with BTKis

European label guidance

Agent	Very common (≥1/10); any grade of infection	Additional label information
Ibrutinib ¹	Pneumonia, URTI, skin infections	 Infections (including sepsis, neutropenic sepsis, bacterial, viral, or fungal) reported, some fatal Invasive fungal infections, including cases of aspergillosis, cryptococcosis, and PJP, some with fatal outcomes Reactivation of HBV and cases of PML have been reported, some with fatal outcomes
Acalabrutinib ²	Monotherapy: URTI and sinusitis Combination therapy with obinutuzumab: URTI, sinusitis, nasopharyngitis, urinary tract infection, and pneumonia	 Serious infections (bacterial, viral, or fungal), including fatal events reported, predominantly in the absence of Grade 3/4 neutropenia Infections as a result of HBV and HZV reactivation, aspergillosis, and PML have occurred
Zanubrutinib ³	Pneumonia, URTI, urinary tract infection	 Infections (including sepsis, bacterial, viral, or fungal) reported, some fatal Reactivation of HBV

^{1.} Janssen-Cilag International NV. Imbruvica – summary of product characteristics; November 2022. 2. AstraZeneca AB. Calquence – summary of product characteristics; December 2021.

^{3.} BeiGene Ireland Ltd. Brukinsa – summary of product characteristics; December 2022.

Infections associated with PI3Kis and BCL2is

European label guidance

Agent	Very common (≥1/10); any grade of infection	Additional label information
Idelalisib ¹	Infections (including PJP and CMV)	 Serious and fatal infections reported, including opportunistic infections such as PJP and CMV PJP prophylaxis should be administered throughout treatment and up to 6 months after discontinuation
Venetoclax ²	Pneumonia and URTI	 Serious infections, including sepsis with fatal outcome, reported

Combining targeted therapies may result in an increase of toxicities including infections

Infection prophylaxis

European label guidance

Prophylaxis*	Ibrutinib	Acalabrutinib	Zanubrutinib	Idelalisib	Venetoclax
Bacterial	-	-	_	-	-
Viral (IVGG)	_	_	_	_	_
Pneumocystis jirovecii	_	_	_	Yes, up to 6 months after treatment is stopped ³	_
Fungal	_	_	_	-	_

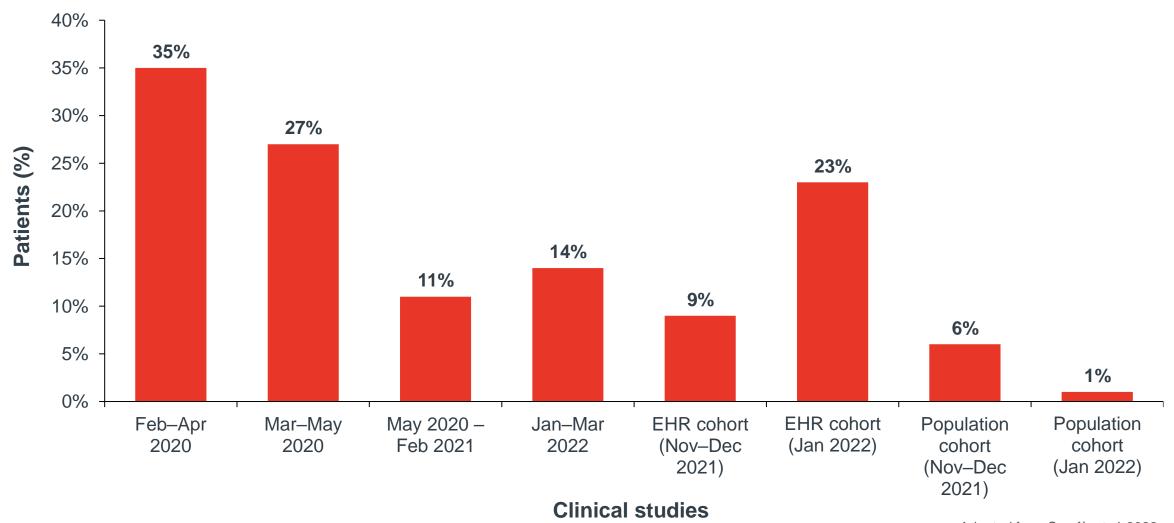
Ig, immunoglobulin; IVGG, intravenous gamma globulin.

^{*}Consider individual prophylaxis according to standard of care in patients who are at increased risk for opportunistic infections. Monitor patients for signs and symptoms of infection and treat as medically appropriate.^{1–5}

^{1.} Janssen-Cilag International NV. Imbruvica – summary of product characteristics; November 2022. 2. AstraZeneca AB. Calquence – summary of product characteristics; December 2021. 3. BeiGene Ireland Ltd. Brukinsa – summary of product characteristics; December 2022. 4. Gilead Sciences Ireland UC. Zydelig – summary of product characteristics; October 2021. 5. AbbVie Deutschland GmbH & Co. KG. Venclyxto – summary of product characteristics; January 2023. 6. Rivera D et al. Curr Oncol Rep 2022; 24 (8): 1003–1014.

Infection prophylaxis

European label guidance

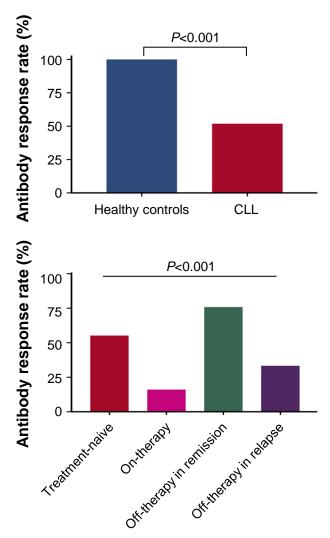

Prophylaxis*	Ibrutinib	Acalabrutinib	Zanubrutinib	Idelalisib	Venetoclax	
Bacterial	_	_	_	_	_	
	Consider Ig replacement therapy for bacterial prophylaxis only for patients with IgG <400 mg/dL and/or recurrent or severe infections ⁶					
				ı	Rivera et al. 2022	
Fungal	_	_	_	_	_	

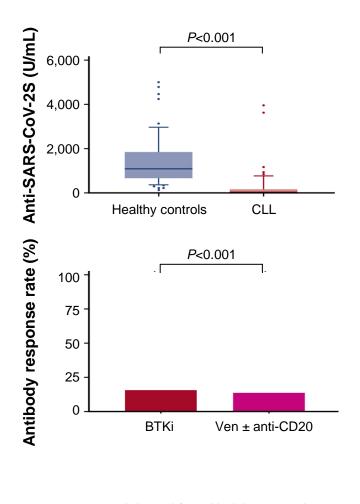
Ig, immunoglobulin; IVGG, intravenous gamma globulin.

^{*}Consider individual prophylaxis according to standard of care in patients who are at increased risk for opportunistic infections. Monitor patients for signs and symptoms of infection and treat as medically appropriate.^{1–5}

^{1.} Janssen-Cilag International NV. Imbruvica – summary of product characteristics; November 2022. 2. AstraZeneca AB. Calquence – summary of product characteristics; December 2021. 3. BeiGene Ireland Ltd. Brukinsa – summary of product characteristics; December 2022. 4. Gilead Sciences Ireland UC. Zydelig – summary of product characteristics; October 2021. 5. AbbVie Deutschland GmbH & Co. KG. Venclyxto – summary of product characteristics; January 2023. 6. Rivera D et al. Curr Oncol Rep 2022; 24 (8): 1003–1014.

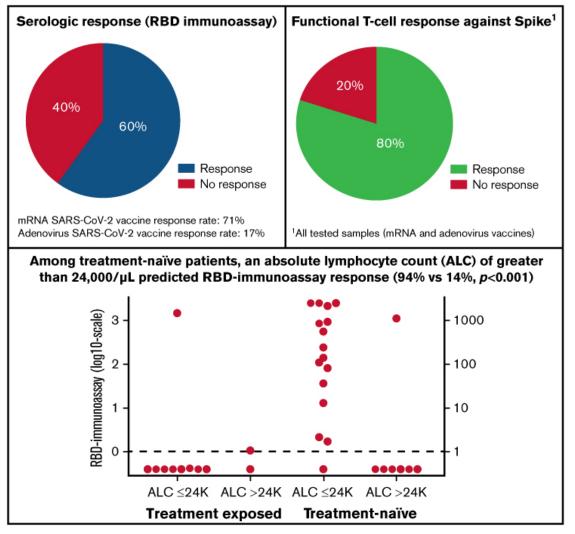
COVID-19—related mortality in patients with CLL over time

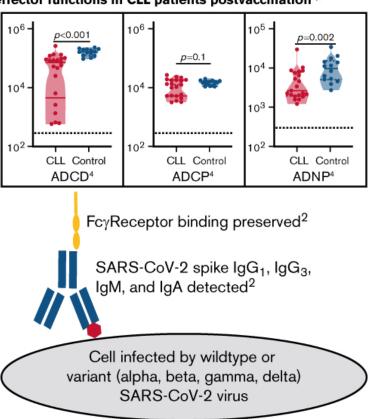



Adapted from Scarfò et al. 2022.

Prevention and vaccines for SARS-CoV-2 infection

- Control measures recommended for aerosol-droplet and contact transmission:
 - Hand hygiene
 - Physical distancing
 - Face masks
 - Ventilation of rooms
- Deferral of chemo(immuno)therapy is not advisable in patients with active cancer and asymptomatic COVID-19, but individual risks and benefits should be assessed
- Non-chemotherapy, targeted drugs should not be discontinued, even in patients with COVID-19
- Reduce the number of visits to the hospital (during the pandemic peak)
- Vaccines and vaccination: mRNA-based vectors (BNT162b2 and mRNA-1273)


Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with CLL



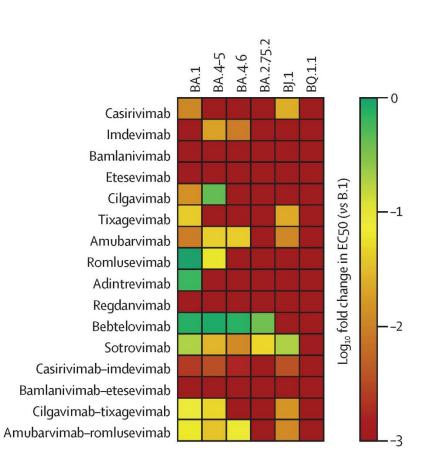
Adapted from Herishanu et al. 2021.

Humoral and cellular immunogenicity of SARS-CoV-2 vaccines in CLL: A prospective cohort study

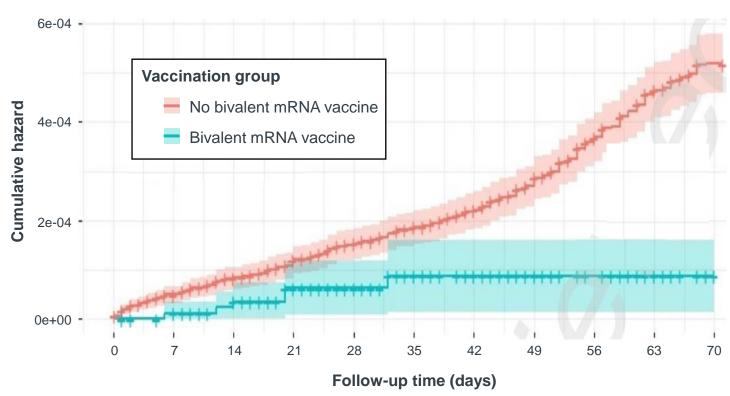
Antibodies against spike are capable of FcR binding and effector functions in CLL patients postvaccination^{2,3}

²All tested samples (mRNA vaccines); ³Wildtype data shown here; ⁴Antibody dependent complement deposition (ADCD), antibody dependent cellular phagocytosis (ADCP), antibody dependent neutrophil phagocytosis (ADNP)

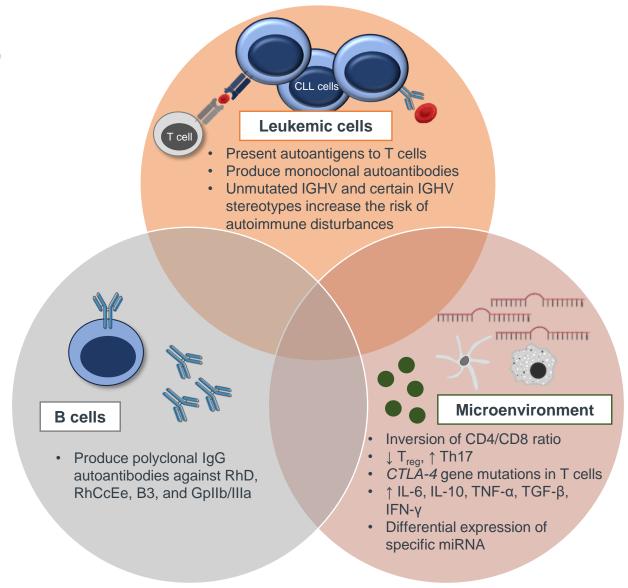
18


Possible treatments for SARS-CoV-2 infection

- Monoclonal antibodies (e.g. sotrovimab, etesevimab—bamlanivimab, imdevimab—casirivimab)
- Antiviral treatments (initially remdesivir, then nirmatrelvir–ritonavir and molnupiravir) have been approved to prevent infections from progressing from mild–moderate to severe
- Tixagevimab—cilgavimab has been authorized as pre-exposure prophylaxis for COVID-19 in patients who are moderately to severely immunocompromised


Omicron BQ.1.1 sublineage shows extensive resistance to anti-SARS-CoV-2 mAbs

		B.1	BA.1	BA.4-5	BA.4.6	BA.2.75.2	BJ.1	BQ.1.1
ſ	Casirivimab	21	1890	>50000	>50 000	>50000	880	>50000
	Imdevimab	19	>50000	994	2109	>50000	>50000	>50000
	Bamlanivimab	16	>50000	>50000	>50000	>50000	>50000	>50000
	Etesevimab	53	>50000	>50000	>50000	>50000	>50000	>50000
sq	Cilgavimab	37	2658	88	24200	>50000	>50000	>50000
Single mAbs	Tixagevimab	7	173	10090	27740	>50000	304	>50000
नुह }	Amubarvimab	53	5641	1234	1290	>50000	4762	>50000
: <u>Ş</u>	Romlusevimab	852	866	8279	>50000	>50000	>50000	>50000
	Adintrevimab	14	23	>50000	>50000	>50000	>50000	>50000
	Regdanvimab	7	>50000	>50000	>50000	6336	>50000	>50000
	Bebtelovimab	5	7	6	7	14	>50000	>50000
l	Sotrovimab	157	833	5554	13 000	3239	825	>50000
اً ة أ	Casirivimab-imdevimab	9	3642	2611	5395	>50000	2456	>50000
cktails mAbs	Bamlanivimab–etesevimab	18	>50000	>50000	>50000	>50000	>50000	>50000
Cocktails of mAbs	Cilgavimab–tixagevimab	7	97	155	7131	>50000	482	>50000
ن [Amubarvimab-romlusevimab	64	657	1819	1015	>50000	5359	>50000


Efficacy of bivalent mRNA vaccine in preventing severe COVID-19 outcomes

	Bivalent mRNA vaccine	No bivalent mRNA vaccine	HR (95% CI)	Efficacy
Hospitalization	6	297	0.19 (0.08-0.43)	81%
Deaths	1	73	0.14 (0.02-1.04)	86%

Autoimmune phenomena

Autoimmunity in CLL

CLL, chronic lymphocytic leukemia; *CTLA-4*, cytotoxic T lymphocyte—associated antigen 4; Gp, glycoprotein; IFN-γ, interferon gamma; IgG, immunoglobulin G; IGHV, immunoglobulin heavy chain; IL, interleukin; miRNA, microRNA; RhCcEe, Rh blood group CcEe antigens; RhD, Rh blood group D antigen; TGF-β, transforming growth factor beta; Th17, type 17 T helper cell; TNF-α, tumor necrosis factor alpha; T_{reg}, regulatory T cell. Abiol N *et al. Cancer J* 2021; 27 (4): 286–296.

Autoimmune phenomena in CLL

Common¹

- AIHA (5–9%)
- Immune thrombocytopenia (1%–3%)
- PRCA (<1%)
- Immune neutropenia (?) (LGL)

Infrequent^{1,2}

- Autoimmune disorders preceding CLL
 - o (e.g. pernicious anemia)
- Concomitant autoimmune disorders / CLL
 - (e.g. cold agglutinin disease, paraneoplastic pemphigus, neuropathies)

Anemia/thrombocytopenia: Immune or bone marrow failure? Some clues

	Immune	Bone marrow failure
Prior history of IC	Yes	No
Ongoing or recent reaction	No	Yes
Onset	Abrupt	Gradual
Plt count / Hb level	Very low	Moderately low
Bone marrow	Not massively infiltrated Glycophorin ++ / Factor VIII	Packed
Indirect signs of hemolysis	Yes, but not always!	No
Spherocytes / large plts	Yes, not striking	No
Laboratory tests	AIHA: DAT(+) ITP: No reliable tests	DAT(-)
Dissociated Hb / plt count	Possible	No
Response to corticosteroids	Yes	No

Prognostic factors correlated with autoimmune cytopenia

Clinical	prognostic	factors
Ommoun	progriostic	idotoio

Advanced stage

Older age

Male

High white cell count

Short lymphocyte doubling time

Biological prognostic factors

Beta 2 microglobulin

High CD38

High ZAP70

Unmutated IGHV genes

Poor risk cytogenetics

Targeted therapies minimize the risk of developing autoimmune cytopenias

Treatment regimen	AIHA incidence	Remarks
Ibrutinib	0%–3%	Selected patients (trial) Higher in RWD
Acalabrutinib	~3%	Selected patients (trial)
Zanubrutinib	NR	Selected patients (trial) No RWD
Venetoclax	2%–7%	Selected patients (observational study) Heavily pretreated Monotherapy (higher)
Pl3Ki	0.9%–3%	Selected patients (trial)

Treatment for autoimmune cytopenia in CLL

Adapted from Moreno 2021.

Summary (1/2)

- Immune disturbances are an intrinsic part of CLL, not an epiphenomenon¹
- Chemo(immuno)therapy regimens have been shown to be extremely immunosuppressive^{2–5}
- Targeted therapies have significantly improved patient outcomes in previously untreated and relapsed/refractory CLL patients^{6–8}
- Infections are still the main cause of death in CLL even in the era of targeted therapies⁹
- Patients with CLL show poor serological responses to SARS-CoV-2 vaccination and other viruses¹⁰

CLL, chronic lymphocytic leukemia.

1. Moreno C et al. J Exp Clin Cancer Res 2021; 40 (1): 321. 2. Beyer M et al. Blood 2005; 106 (6): 2018–2025. 3. Ysebaert L et al. Leukemia 2010; 24 (7): 1310–1316. 4. Gassner FJ et al. Cancer Immunol Immunother 2011; 60 (1): 75–85. 5. Martínez-Calle N et al. Br J Haematol 2019; 184 (6): 957–968. 6. Janssen-Cilag International NV. Imbruvica – summary of product characteristics; November 2022. 7. AstraZeneca AB. Calquence – summary of product characteristics; December 2021. 8. BeiGene Ireland Ltd. Brukinsa – summary of product characteristics; December 2022. 9. Arzoun H et al. Cureus 2022; 14 (3): e22927. 10. Arbel R et al. Lancet 2023; Preprint (DOI: 10.2139/ssrn.4314067).

Summary (2/2)

- Autoimmune phenomena occur in up to 10% of the CLL population¹
- Targeted therapies do not increase the risk of autoimmune cytopenias and can be used to treat them²
- Further studies are needed to better clarify the role of targeted therapies as immunomodulatory drugs and their potential clinical implications (infections, autoimmunity, and secondary malignancies)

CLL Group - H. de la Santa Creu i Sant Pau

Carol Moreno Miguel Arguello Nil Albiol Alba Mora Paola Jara

Esther Moga Josep Nomdedéu

Other collaborators: Eva Gimeno (H. Mar) / Tomás Roncero (ICO Girona)

