
ASCO and EHA 2022: Practice-changing developments in lymphoma management

Tuesday, September 13, 2022 | 17:00-18:30 (CEST)

Disclosures

- Honoraria: AbbVie, BeiGene, Celltrion, Gilead, Janssen, Novartis, Pfizer, and Roche
- Research funding: AbbVie, Bayer, Celltrion, Janssen, MSD, and Roche

MSD, Merck Sharp & Dohme.

Disclaimers

- The information contained herein is intended for healthcare professionals only and is given for educational purposes only. This document is not intended for professional counseling or advice.
- The views expressed in the presentations are those of the speakers and may not necessarily reflect the opinion of BeiGene. BeiGene does not guarantee the accuracy or reliability of the information provided herein and expressly disclaims liability for any errors or omissions in this information.
- Prescribing information (PI) may vary depending on local approval in each country. Therefore, before prescribing any product, always refer to local materials such as the PI and/or the Summary of Product Characteristics.
- Zanubrutinib is not approved for the treatment of CLL/SLL or follicular lymphoma.

Housekeeping

Please note that personal recording of this meeting is not permitted (a recording will be available to watch soon after the meeting)

A post-meeting survey will be shared at the end of the webinar; we would greatly appreciate your feedback

Introducing the panel

Christian Buske (Chair)
University Hospital Ulm,
Germany

Wojciech Jurczak Maria Skłodowska-Curie National Research Institute of Oncology, Poland

Véronique Leblond *Pitié-Salpêtrière Hospital, France*

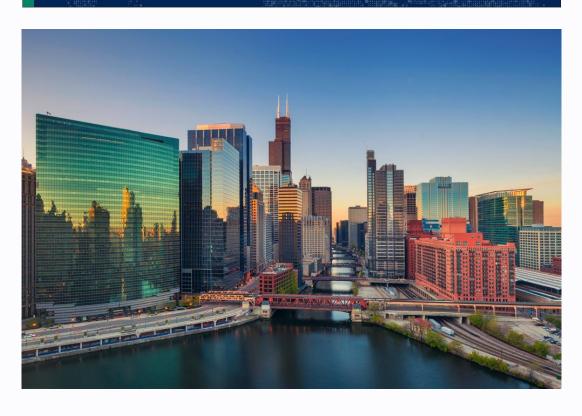
Pier Luigi Zinzani University of Bologna, Italy

Agenda

17:00	Welcome and introductions	Christian Buske
17:05	Highlights in aggressive lymphomas	Pier Luigi Zinzani
17:20	Highlights in indolent lymphomas	Véronique Leblond
17:35	Highlights in chronic lymphocytic leukemia	Wojciech Jurczak
17:50	Panel discussion	Panel: All faculty
18:10	Audience Q&A	Panel: All faculty
18:25	Summary and meeting close	Christian Buske

Audience questions

- Please exit full-screen view and enter your question in the submission box for the panel to answer during the Q&A session
 - You can vote for the questions you would most like the panel to answer



June 3-7, 2022

McCormick Place | Chicago, IL June 4–7: Exhibits

#ASCO22

Highlights in aggressive lymphomas

Professor Pier Luigi Zinzani University of Bologna, Italy

Disclosures

- Advisory boards: ADC Therapeutics, BeiGene, BMS, Celltrion, Eusapharma, Gilead, Incyte, Janssen-Cilag, Kyowa Kirin, MSD, Novartis, Roche, Sandoz, Secura Bio, Servier, Takeda, and TG Therapeutics
- Consultant: Eusapharma, MSD, and Novartis
- Speaker bureau: BeiGene, BMS, Celltrion, Eusapharma, Gilead, Incyte, Janssen-Cilag, Kyowa Kirin, MSD, Novartis, Roche, Servier, Takeda, and TG Therapeutics

11

Glofitamab in patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) and ≥2 prior therapies: Pivotal Phase II expansion results

Michael Dickinson¹, Carmelo Carlo-Stella², Franck Morschhauser³, Emmanuel Bachy⁴, Paolo Corradini⁵, Gloria Iacoboni⁶, Cyrus Khan⁷, Tomasz Wrobel⁸, Fritz Offner⁹, Marek Trneny¹⁰, Shang-Ju Wu¹¹, Guillaume Cartron¹², Mark Hertzberg¹³, Anna Sureda Balari¹⁴, David Perez-Callejo¹⁵, Linda Lundberg¹⁵, James Relf¹⁶, Emma Clark¹⁶, Kathryn Humphrey¹⁶, Martin Hutchings¹⁷

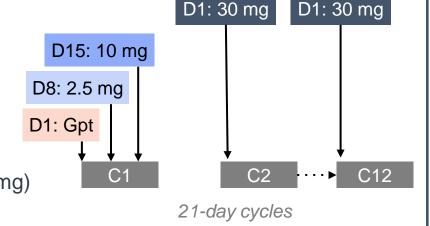
¹Peter MacCallum Cancer Centre, Royal Melbourne Hospital and The University of Melbourne, Melbourne, VIC, Australia; ²Humanitas University and IRCCS Humanitas Research Hospital, Milan, Italy; ³Hôpital Claude Huriez and CHU de Lille, Lille, France; ⁴Centre Hospitalier Lyon-Sud, Lyon, France; ⁵Università degli Studi di Milano and Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS) Istituto Nazionale dei Tumori, Milan, Italy; ⁶Vall d'Hebron University Hospital, Barcelona, Spain; ⁷Allegheny Health Network, Pittsburgh, PA, USA; ⁸Uniwersytet Medyczny we Wrocławiu, Wroclaw, Poland; ⁹Universitair Ziekenhuis Gent, Ghent, Belgium; ¹⁰Charles University Hospital, Prague, Czech Republic; ¹¹National Taiwan University Hospital, Taipei, Taiwan; ¹²CHU de Montpellier, Montpellier, France; ¹³Prince of Wales Hospital and University of New South Wales, Sydney, NSW, Australia; ¹⁴Institut Català d'Oncologia Hospitalet, Barcelona, Spain; ¹⁵F. Hoffmann-La Roche Ltd, Basel, Switzerland; ¹⁶Roche Products Ltd, Welwyn Garden City, United Kingdom; ¹⁷Rigshospitalet, Copenhagen, Denmark.

Study overview

Pivotal Phase II expansion in patients with R/R DLBCL and ≥2 prior therapies (NP30179)

Key inclusion criteria

- DLBCL NOS, HGBCL, transformed FL, or PMBCL
- ECOG PS: 0–1
- ≥2 prior therapies including:
 - Anti-CD20 antibody
 - Anthracycline


Glofitamab IV administration

Fixed-duration treatment

Maximum 12 cycles

CRS mitigation:

- Gpt $(1 \times 1,000 \text{ mg})$
- C1 step-up dosing
- Monitoring after first glofitamab dose (2.5 mg)

Endpoints

- Primary: CR (best response) rate by IRC*
- Key secondary: ORR,† DoR, DoCR,† PFS, and OS

^{*}By PET-CT (Lugano criteria). †By IRC and investigator.

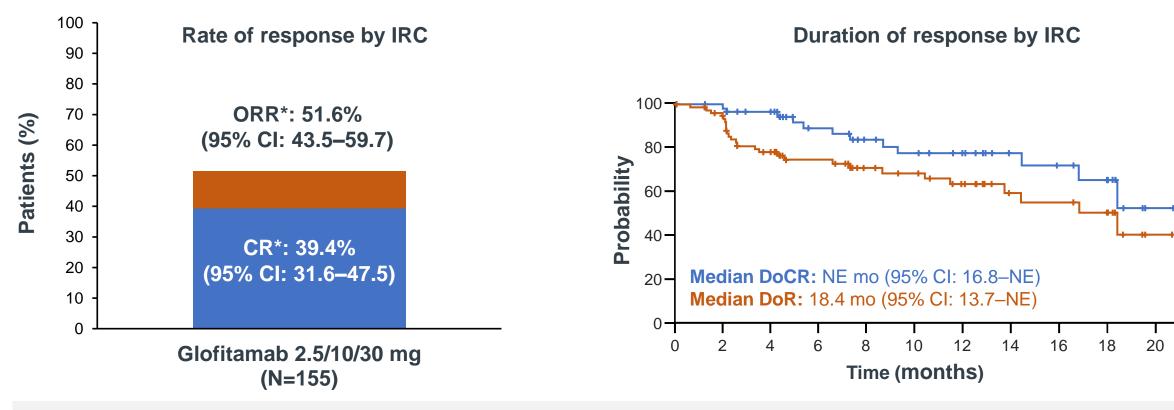
C, Cycle; CD, cluster of differentiation; CR, complete response; CRS, cytokine release syndrome; D, Day; DLBCL, diffuse large B-cell lymphoma; DoCR, duration of complete response; DoR, duration of response; ECOG PS, Eastern Cooperative Oncology Group Performance Status; FL, follicular lymphoma; Gpt, obinutuzumab pretreatment; HGBCL, high-grade B-cell lymphoma; IRC, independent review committee; IV, intravenous; NOS, not otherwise specified; ORR, overall response rate; OS, overall survival; PET-CT, positron emission tomography–computed tomography; PFS, progression-free survival; PMBCL, primary mediastinal large B-cell lymphoma; R/R, relapsed/refractory.

Baseline characteristics

Heavily pretreated, highly refractory population

n (%)*	N=154 [†]	
Median (range) age, years		66.0 (21–90)
Male		100 (64.9)
ECOG PS‡	0	69 (44.8)
LCOG P3	1	84 (54.5)
	1	10 (6.5)
Ann Arbor stage	II	25 (16.2)
Ann Arbor stage	III	31 (20.1)
	IV	85 (55.2)
	DLBCL	110 (71.4)
NHI subtyna	trFL	27 (17.5)
NHL subtype	HGBCL	11 (7.1)
	PMBCL	6 (3.9)
Bulky disease	>6 cm	64 (41.6)
Dulky discase	>10 cm	18 (11.7)

n (%)*	N=154 [†]
Median (range) no. of prior lines, n	3 (2–7)
2 prior lines	62 (40.3)
≥3 prior lines	92 (59.7)
Prior anti-CD20 Ab therapy	154 (100.0)
Prior anthracycline therapy	149 (96.8)
Prior CAR-T therapy	51 (33.1)
Prior ASCT	28 (18.2)
Refractory to any prior therapy	139 (90.3)
Refractory to last prior therapy	132 (85.7)
Primary refractory	90 (58.4)
Refractory to prior CAR-T therapy	46 (29.9)
Refractory to any prior anti-CD20	128 (83.1)


Clinical cut-off date: March 14, 2022. *Unless otherwise specified. †Safety-evaluable population (all treated patients). ‡ECOG PS: 2, n=1 (0.6%).

Ab, antibody; ASCT, autologous stem cell transplant; CAR-T, chimeric antigen receptor T-cell; CD, cluster of differentiation; DLBCL, diffuse large B-cell lymphoma; ECOG PS, Eastern Cooperative Oncology Group Performance Status; HGBCL, high-grade B-cell lymphoma; NHL, non-Hodgkin lymphoma; PMBCL, primary mediastinal large B-cell lymphoma; trFL, transformed follicular lymphoma.

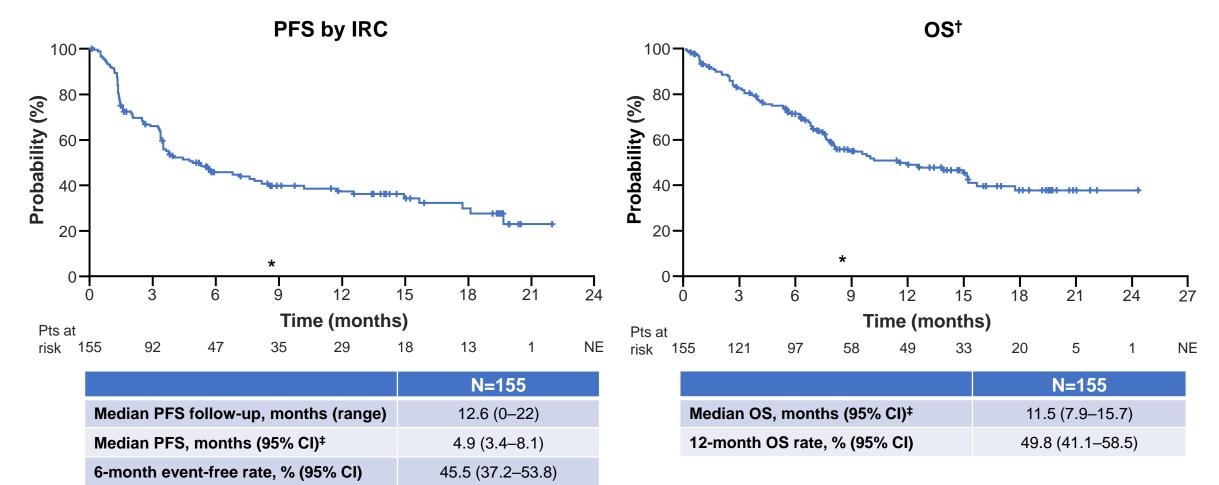
Dickinson M et al. Oral presentation at ASCO 2022; Chicago, IL, USA, June 3–7, 2022 (Abstract 7500).

Response rates

High CR/ORR rate and durable response after cessation of therapy

ORR

- At the time of the primary analysis, the primary endpoint was met in the primary efficacy population (n=108)[†]
 - o 35.2% CR rate by IRC significantly greater (P<0.0001) than 20% historical control CR rate[‡]

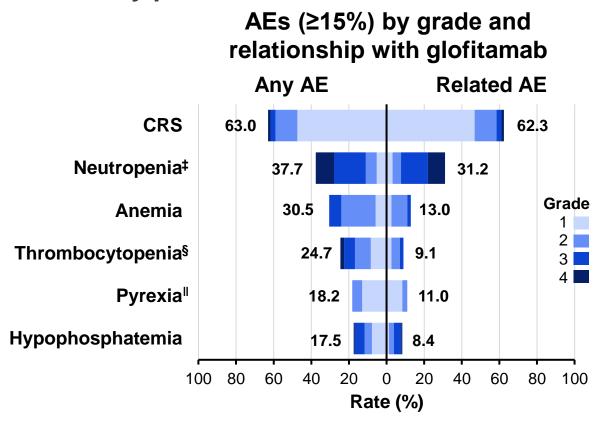

^{*}Best response by intent-to-treat population; †the pivotal expansion cohort population; ‡the historical control CR rate was pre-specified based on a meta-analysis in patients with R/R DLBCL (where most [≥50%] had received ≥2 prior therapies) and compared with the CR rate in the primary efficacy-evaluable population using an exact binomial test (2-sided alpha level: 5%). CR, complete response; DoCR, duration of complete response; DoCR, duration of response; IRC, Independent Review Committee; mo, months; NE, not estimable; ORR, overall response rate.

Dickinson M et al. Abstract 7500. Oral presentation at 2022 ASCO Annual Meeting: Chicago, Illinois, US, June 3−7, 2022.

Time-to-event endpoints

12-month event-free rate, % (95% CI)

Clinically significant freedom from progression at 12 months and long-term OS


37.1 (28.5-45.8)

^{*}Maximum treatment length. †Includes five deaths due to COVID-19. ‡Kaplan–Meier estimates.
CI, confidence interval; COVID-19, coronavirus disease 2019; IRC, independent review committee; NE, not estimable; OS, overall survival; PFS, progression-free survival; Pts, patients.
Dickinson M *et al.* Oral presentation at ASCO 2022; Chicago, IL, USA, June 3–7, 2022 (Abstract 7500).

Glofitamab safety profile

Glofitamab was well tolerated, with a manageable safety profile

n (%)*	N=154
Median no. of cycles received (range)	5 (1–13)
Median relative dose intensity, % (range)	100 (94–100)
AE Related AE	152 (98.7) 140 (90.9)
Grades 3–4 AE Related AE	87 (56.5) 64 (41.6)
Serious AE Related AE	73 (47.4) 46 (29.9)
Grade 5 (fatal AE) Related AEs	8 (5.2) [†] 0
AE leading to treatment discontinuation Related AE	14 (9.1) 5 (3.2)

CRS was mostly low grade, time of onset was predictable, and most events occurred during C1

^{*}Unless otherwise specified. †COVID-19/COVID-19 pneumonia (n=5); sepsis (n=2); delirium (n=1). ‡Includes neutrophil count decreased. §Includes platelet count decreased. Pyrexia events separate from CRS. AE, adverse event; COVID-19, coronavirus disease 2019; CRS, cytokine release syndrome. Dickinson M *et al.* Oral presentation at ASCO 2022; Chicago, IL, USA, June 3–7, 2022 (Abstract 7500).

Subcutaneous epcoritamab in patients with relapsed or refractory large B-cell lymphoma (EPCORE NHL-1): Pivotal results from a Phase 2 study

Catherine Thieblemont¹, Tycel Phillips², Herve Ghesquieres³, Chan Y. Cheah⁴, Michael Roost Clausen⁵, David Cunningham⁶, Young Rok Do⁷, Tatyana Feldman⁸, Robin Gasiorowski⁹, Wojciech Jurczak¹⁰, Tae Min Kim¹¹, David John Lewis¹², Marjolein van der Poel¹³, Michelle Limei Poon¹⁴, Thomas Doerr¹⁵, Nurgul Kilavuz¹⁶, Menghui Chen¹⁶, Mariana Sacchi¹⁶, Brian Elliott¹⁶, Martin Hutchings¹⁷, Pieternella Lugtenburg¹⁸

¹Assistance Publique & Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Hémato-oncologie, Université de Paris, Paris, France; ²University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA; ³Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France; ⁴Sir Charles Gairdner Hospital, Nedlands, Australia; ⁵Vejle Hospital, Vejle, Denmark; ⁶The Royal Marsden NHS Foundation Trust, Sutton, UK; ⁷Keimyung University Dongsan Medical Center, Daegu, Republic of Korea; ⁸Hackensack Meridian Health Hackensack University Medical Center, Hackensack, NJ, USA; ⁹Concord Hospital, University of Sydney, Sydney, Australia; ¹⁰MSC National Research Institute of Oncology, Kraków, Poland; ¹¹Seoul National University Hospital, Seoul, Republic of Korea; ¹²University Hospitals Plymouth NHS Trust, Derriford Hospital, Plymouth, UK; ¹³On behalf of the Lunenburg Lymphoma Phase I/II Consortium-HOVON/LLPC, Maastricht, Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands; ¹⁴National University Hospital, Singapore; ¹⁵AbbVie, North Chicago, IL, USA; ¹⁶Genmab, Princeton, NJ, USA; ¹⁷Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; ¹⁸On behalf of the Lunenburg Lymphoma Phase I/II Consortium-HOVON/LLPC, Erasmus MC Cancer Institute, University Medical Center, Department of Hematology, Rotterdam, Netherlands.

EPCORE NHL-1: LBCL expansion cohort

Phase I

Phase II

Dose escalation

Dose expansion data cut-off date: January 31, 2022 Median follow-up: 10.7 months

B-cell NHL:

- No DLTs
- MTD not reached
- RP2D identified
- Manageable safety profile
- Encouraging antitumor activity

Key inclusion criteria:

- R/R CD20+ mature B-cell neoplasm
- ECOG PS: 0-2
- ≥2 prior lines of antineoplastic therapy, including ≥1 anti-CD20 mAb
- FDG PET avid and measurable disease by CT/MRI scan
- Prior CAR-T allowed

Step-up dosing*

Epcoritamab SC RP2D: 48 mg QW: C1–C3 Q2W: C4–C9 Q4W: C10+

Treatment until PD^{†,‡}
or unacceptable
toxicity

LBCL cohort (N=157) DLBCL, HGBCL, PMBCL, and FL Gr3B

- To ensure patient safety and to better characterize CRS, in-patient monitoring was required at first full dose for 24 hours during this part of the study
- Primary endpoint: ORR by IRC
- **Key secondary endpoints:** DoR, TTR, PFS, OS, CR rate, and safety/tolerability

*Step-up dosing (priming 0.16 mg dosing and intermediate 0.8 mg dosing before first full dose) and corticosteroid prophylaxis were used to mitigate CRS. †Radiographic disease evaluation was performed every 6 weeks for the first 24 weeks (6, 12, 18, and 24 weeks), then every 12 weeks (36 and 48 weeks), and every 6 months thereafter. ‡Measurable disease with CT or MRI scan with involvement of ≥2 lesions/nodes with a long axis >1.5 cm and a short axis >1.0 cm (or 1 lesion/node with a long axis >2.0 cm and a short axis ≥1.0 cm) and FDG PET scan that demonstrated positive lesion(s) compatible with CT-defined (or MRI-defined) anatomic tumor sites for FDG-avid lymphomas. C, Cycle; CAR-T, chimeric antigen receptor T-cell; CD, cluster of differentiation; CR, complete response; CRS, cytokine release syndrome; CT, computed tomography; DLBCL, diffuse large B-cell lymphoma; DLT, dose-limiting toxicity; DoR, duration of response; ECOG PS, Eastern Cooperative Oncology Group Performance Status; FDG, fluorodeoxyglucose; FL Gr3B, follicular lymphoma Grade 3B; HGBCL, high-grade B-cell lymphoma; IRC, independent review committee; LBCL, large B-cell lymphoma; mAb, monoclonal antibody; MRI, magnetic resonance imaging; MTD, maximum tolerated dose; NHL, non-Hodgkin lymphoma; ORR, overall response rate; OS, overall survival; PD, progressive disease; PET, positron emission tomography; PFS, progression-free survival; PMBCL, primary mediastinal large B-cell lymphoma; Q2W, every 2 weeks; Q4W, every 4 weeks; QW, once a week; RP2D, recommended Phase II dose; R/R, relapsed/refractory; SC, subcutaneous; TTR, time to response. ClinicalTrials.gov NCT03625037. Available at: https://clinicaltrials.gov/ct2/show/NCT03625037. Accessed September 2022. Thieblemont C *et al.* Oral presentation at EHA 2022; Vienna, Austria, June 9–17, 2022 (Abstract LB2364).

Patients were challenging to treat and highly refractory

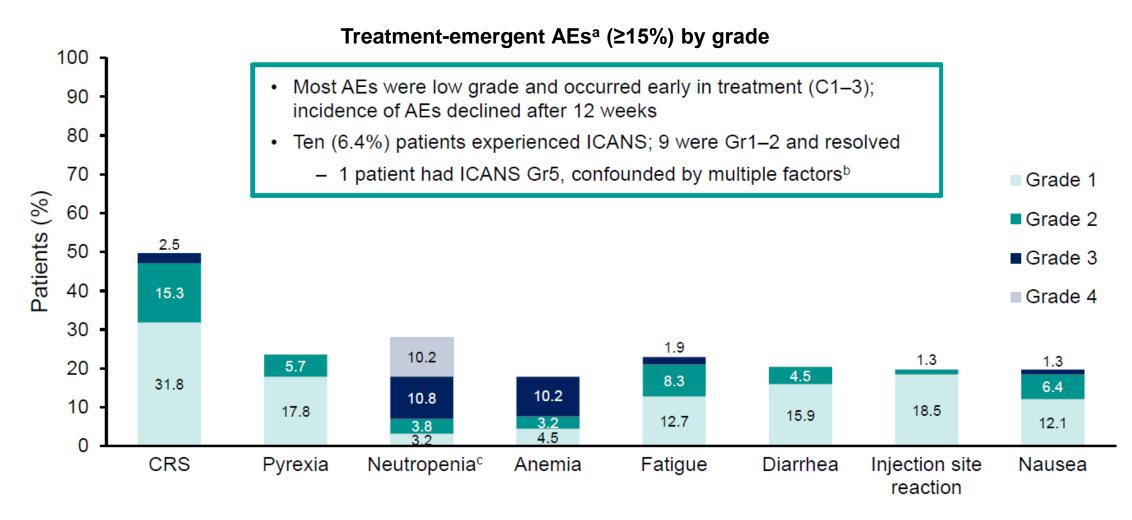
4 (3)

5 (3)

Demographics	LBCL, N=157
Median age (range), years <65, n (%) 65 to <75, n (%) ≥75, n (%)	64 (20–83) 80 (51) 48 (31) 29 (18)
ECOG PS, n (%) 0 1 2	74 (47) 78 (50) 5 (3)
Disease characteristics*	LBCL, N=157
Disease type, n (%) DLBCL De novo Transformed Unknown HGBCL	139 (89) 97/139 (70) 40/139 (29) 2/139 (1) 9 (6)

PMBCL

FL Gr3B


Prior treatments	LBCL, N=157
Median time from initial diagnosis to first dose, years	1.6
Median time from end of last therapy to first dose, months	2.4
Median no. of prior lines of therapy (range)	3 (2–11)
≥3 prior lines of therapy, n (%)	111 (71)
Primary refractory [†] disease, n (%)	96 (61)
Refractory [†] to last systemic therapy, n (%)	130 (83)
Refractory [†] to ≥2 consecutive lines of therapy, n (%)	119 (76)
Prior ASCT criteria, n (%)	31 (20)
Prior CAR-T therapy, n (%) Progressed within 6 months of CAR-T therapy	61 (39) 46/61 (75)

^{*}Double-/triple-hit patients included, many with responses. †Refractory disease is defined as disease that either progressed during therapy or progressed within <6 months of completion of therapy.

ASCT, autologous stem cell transplant; CAR-T, chimeric antigen receptor T-cell; DLBCL, diffuse large B-cell lymphoma; ECOG PS, Eastern Cooperative Oncology Group Performance Status; FL Gr3B, follicular lymphoma Grade 3B; HGBCL, high-grade B-cell lymphoma; LBCL, large B-cell lymphoma; PMBCL, primary mediastinal large B-cell lymphoma.

Thieblemont C *et al.* Oral presentation at EHA 2022; Vienna, Austria, June 9–17, 2022 (Abstract LB2364).

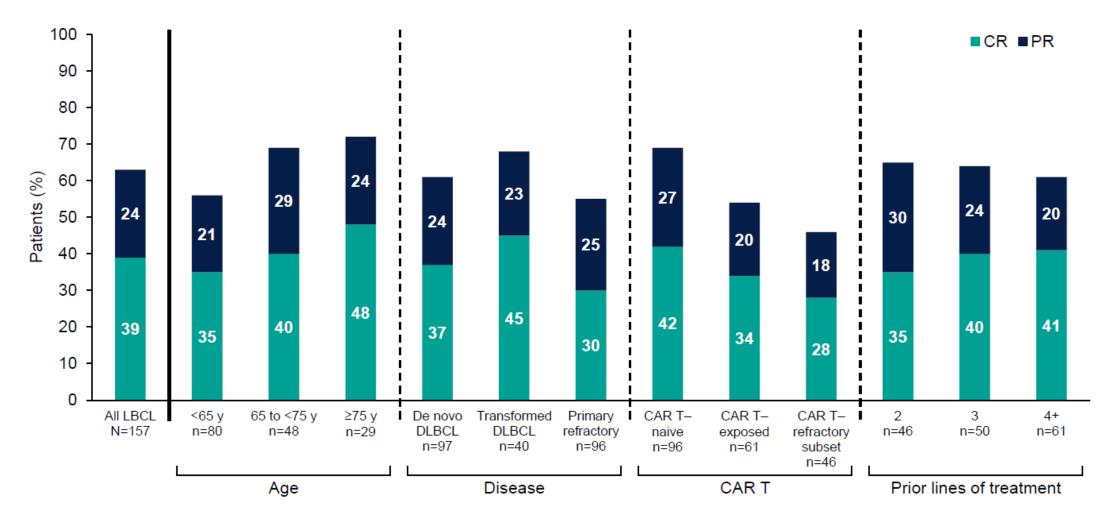
Adverse events were primarily low grade

^aCOVID-19 incidence: 4.5%. ^bPatient experienced ICANS after intermediate dose with multiple confounders, including extensive opioid use for Gr3 pancreatitis, hyperammonemia, multifocal cerebral infarcts in the setting of possible microangiography, and tocilizumab administration. ^cCombined term includes neutropenia and decreased neutrophil count.

AE, adverse event; C, Cycle; COVID-19, coronavirus disease 2019; CRS, cytokine release syndrome; Gr, Grade; ICANS, immune effector cell–associated neurotoxicity syndrome.

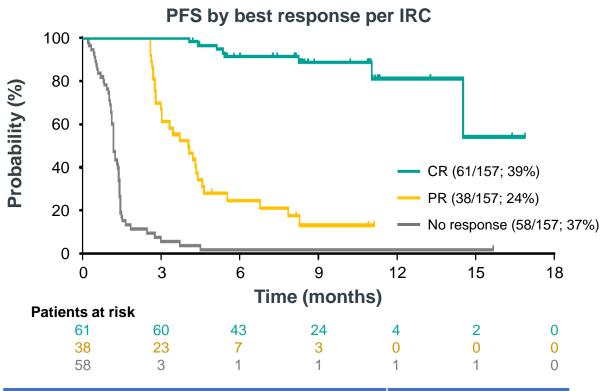
Thieblemont C et al. Oral presentation at EHA 2022; Vienna, Austria, June 9–17, 2022 (Abstract LB2364).

High response rates observed


Best overall response by IRC, n (%)*	LBCL, N=157
Overall response	99 (63) [95% CI: 55–71]
Complete response	61 (39) [95% CI: 31–47]
Partial response	38 (24)
Stable disease	5 (3)
Progressive disease	37 (24)

^{*}Based on Lugano criteria.

CI, confidence interval; IRC, independent review committee; LBCL, large B-cell lymphoma.

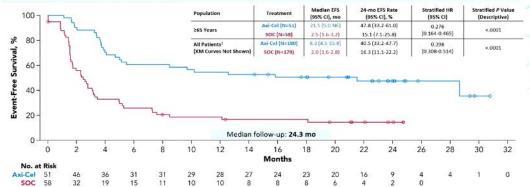

Thieblemont C *et al.* Oral presentation at EHA 2022; Vienna, Austria, June 9–17, 2022 (Abstract LB2364).

Deep responses consistent across key subgroups

Based on IRC assessment and Lugano criteria.

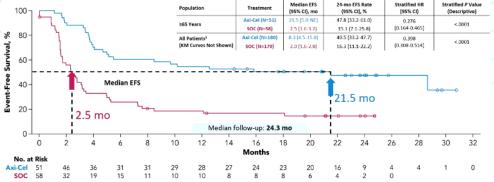
Survival outcomes

100			sian Sui v	ivai		
60 -		******	<u> </u>	designation of the second		
40 -						
20 -						
0 0	3	6	9	12	15	18
Patients at risk	T	Tir	ne (mont	hs)		
157	122	101	74	31	5	0


Overall survival

Kaplan-Meier estimate	
Median PFS for complete responders	Not reached
Complete responders remaining in CR at Month 9	89%
Median PFS, months (95% CI)	4.4 (3.0–7.9)
PFS rate at Month 6, % (95% CI)	43.9 (35.7–51.7)

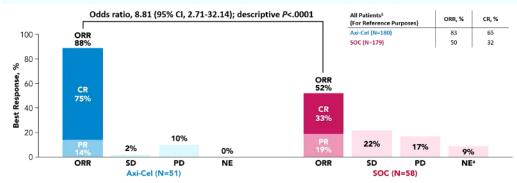
Kaplan-Meier estimate	
Median OS	Not reached
OS rate at Month 6, % (95% CI)	70.6 (62.7–77.2)
OS rate at Month 12, % (95% CI)	56.9 (47.3–65.4)


Clinical and patient-reported outcomes in a Phase 3, randomized study evaluating axicabtagene ciloleucel (axi-cel) versus SoC therapy in elderly pts with R/R LBCL (ZUMA-7)

Primary Endpoint: Event-Free Survival per Blinded Central Review in Patients Aged ≥65 Years

* The primary endpoint of EFS showed that treatment with axi-cel was superior to SOC (HR, 0.276, descriptive P<.0001)

Primary Endpoint: Event-Free Survival per Blinded Central Review in Patients Aged ≥65 Years


With 24.3-months median follow-up, median EFS was longer with axi-cel versus SOC (21.5 months [95% CI, 5.0-NI vs 2.5 months [95% CI, 1.6-3.2], respectively) in patients aged 65 years or older

(All patients: axi-cel n=180; SOC n=179) Patients ≥65 years: axi-cel n=51: SOC n=58

Key results

- KM estimates of 24-month EFS rates: axi-cel 47.8% vs. SOC 15.1%
- CR: axi-cel 75% vs. SOC 33%
- Median OS: axi-cel 28.6 mo vs. SOC NR

Objective Response Rate in Patients Aged ≥65 Years

 ORR was higher with axi-cel versus SOC (descriptive P<.0001), and CR rate of the axi-cel arm was over double that of the SOC arm (75% vs 33%, respectively)

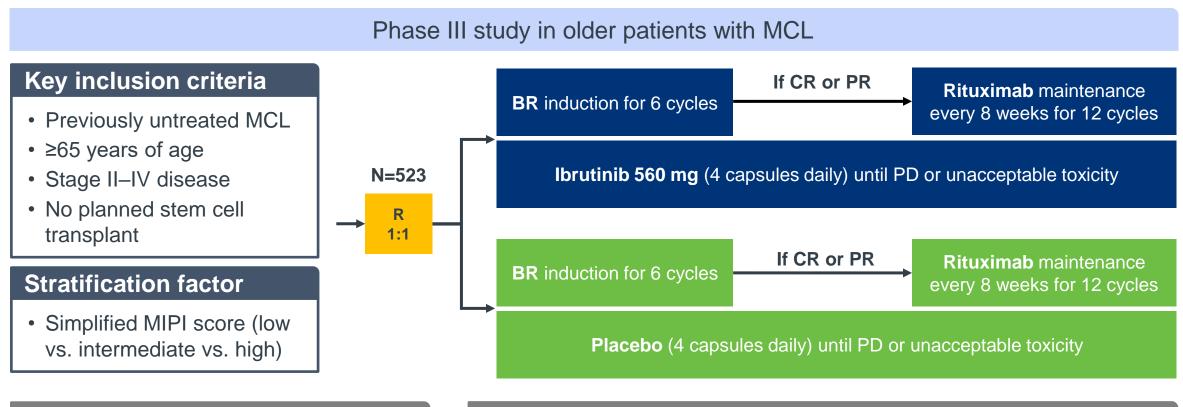
Safety Overview in Patients Aged ≥65 Years

	Axi-Cel		SOC	
	n=49		n=55	
Adverse Events, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Any AE, n (%) ^{a,b}	49 (100)	46 (94)	55 (100)	45 (82)
Pyrexia	47 (96)	4 (8)	14 (25)	0 (0)
Neutropenia ^c	39 (80)	39 (80)	24 (44)	24 (44)
Nausea	23 (47)	1 (2)	37 (67)	3 (5)
Any serious AE, n (%)d	29 (59)	25 (51)	26 (47)	23 (42)
Reason for deaths, n (%)				
Progressive disease	19 (39)	20 (36)
Grade 5 AEs during protocol-specified reporting period	1 (2)e	1 (2) ^f
Definitive therapy–related mortality	0 (0)	1 (2) ^f
Other ^g	1 ((2)	5 (9)

Safety profile of axi-cel was manageable and consistent with previous studies in refractory LBCL¹

Conclusions

Axi-cel demonstrated superiority over 2L SOC in patients ≥65 years with significantly improved EFS and a manageable safety profile


2L, second-line; AE, adverse event; axi-cel, axicabtagene ciloleucel; CI, confidence interval; CR, complete response; EFS, event-free survival; HR, hazard ratio; KM, Kaplan–Meier; LBCL, large B-cell lymphoma; mo, months; ORR, overall response rate; OS, overall survival; PD, progressive disease; PR, partial response; pts, patients; R/R, relapsed/refractory; SD, stable disease; SoC, standard of care. Westin J *et al.* Oral presentation at ASCO 2022; Chicago, IL, USA, June 3–7, 2022 (Abstract 7548).

Primary results from the double-blind, placebo-controlled, Phase III SHINE study of ibrutinib in combination with bendamustine-rituximab and rituximab maintenance as a first-line treatment for older patients with mantle cell lymphoma

Michael Wang¹, Wojciech Jurczak², Mats Jerkeman³, Judith Trotman⁴, Pier Luigi Zinzani⁵, Jan Andrzej Walewski⁶, Jun Zhu⁷, Stephen Spurgeon⁸, Andre Goy⁹, Paul A. Hamlin¹⁰, David Belada¹¹, Muhit Ozcan¹², John Storring¹³, David John Lewis¹⁴, Jose Angel Hernandez Rivas¹⁵, Todd Henninger¹⁶, Sanjay Deshpande¹⁶, Rui Qin¹⁶, Steven Le Gouill¹⁷, Martin H. Dreyling¹⁸

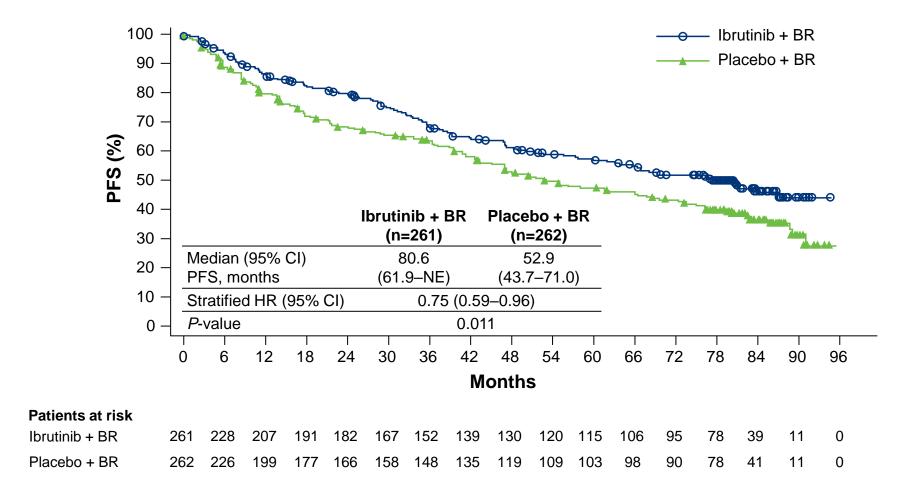
¹The University of Texas MD Anderson Cancer Center, Houston, TX; ²Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland; ³Skane University Hospital and Lund University, Lund, Sweden; ⁴Concord Repatriation General Hospital, University of Sydney, NSW, Australia; ⁵Institute of Hematology "Seragnoli" University of Bologna, Bologna, Italy; ⁶Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; ⁷Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute (Beijing Cancer Hospital), Beijing, China; ⁸Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR; ⁹John Theurer Cancer Center, Hackensack, NJ; ¹0Memorial Sloan Kettering Cancer Center, New York, NY; ¹¹4th Department of Internal Medicine - Haematology, Charles University, Hospital and Faculty of Medicine, Hradec Kralove, Czech Republic; ¹²Ankara University School of Medicine, Ankara, Turkey; ¹³The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada; ¹⁴University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom; ¹⁵Department of Hematology, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain; ¹⁶Janssen Research & Development, Raritan, NJ; ¹¹Institut Curie comprehensive cancer center, Paris, France; Hospitalier Universität München, LMU, Munich, Germany

Study overview

Enrollment

Enrolled between May 2013 and November 2014 at 183 sites

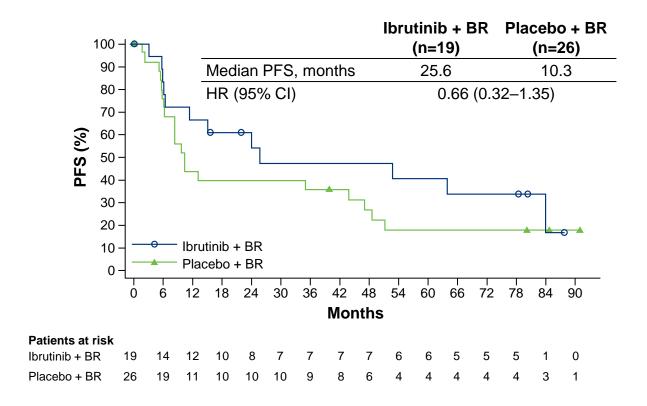
Endpoints

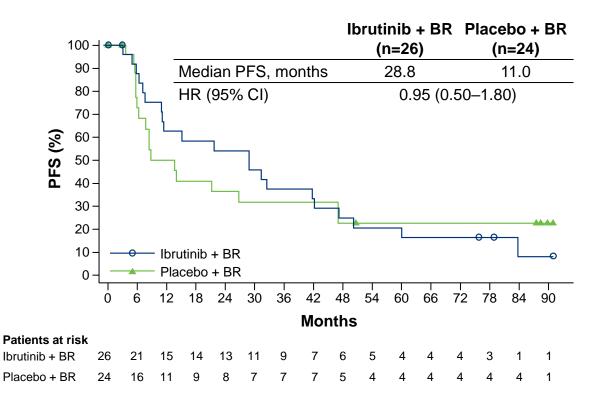

- **Primary endpoint:** PFS (investigator-assessed) in the ITT population
- **Key secondary endpoints:** Response rate, TTNT, OS, safety

BR, bendamustine and rituximab; CR, complete response; ITT, intention-to-treat; MCL, mantle cell lymphoma; MIPI, Mantle Cell Lymphoma International Prognostic Index; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; R, randomized; TTNT, time to next treatment. Wang M et al. Oral presentation at ASCO 2022; Chicago, IL, USA, June 3–7, 2022 (Abstract LBA7502).

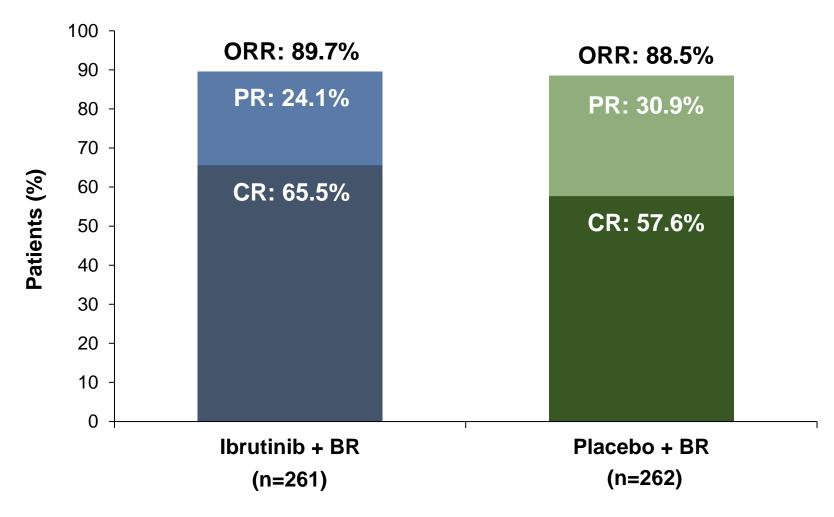
Patient characteristics

	Ibrutinib + BR (n=261)	Placebo + BR (n=262)
Median (range) age, years	71 (65–86)	71 (65–87)
≥75 years, n (%)	74 (28.4)	82 (31.3)
Male, n (%)	178 (68.2)	186 (71.0)
ECOG PS 1, n (%)	127 (48.7)	118 (45.0)
Simplified MIPI, n (%) Low risk Intermediate risk High risk	44 (16.9) 124 (47.5) 93 (35.6)	46 (17.6) 129 (49.2) 87 (33.2)
Bone marrow involvement, n (%)	198 (75.9)	200 (76.3)
Blastoid/pleomorphic histology, n (%)	19 (7.3)	26 (9.9)
Extranodal, n (%)	234 (89.7)	226 (86.3)
Bulky (≥5 cm), n (%)	95 (36.4)	98 (37.4)
TP53 mutated, n (%)	26 (10.0)	24 (9.2)
TP53 mutation status unknown, n (%)	121 (46.4)	133 (50.8)


Progression-free survival (all patients)

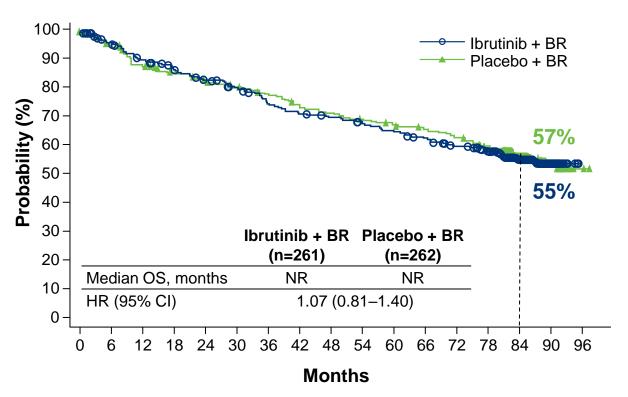

- Ibrutinib + BR associated with a 25% reduction in risk of PD or death vs. placebo + BR
- Median PFS was 2.3 years longer with ibrutinib + BR vs. placebo + BR
 - 6.7 vs. 4.4 years; *P*=0.011

Progression-free survival (high-risk subgroups)


Blastoid/pleomorphic histology

TP53 mutation present

Response rates according to treatment arm

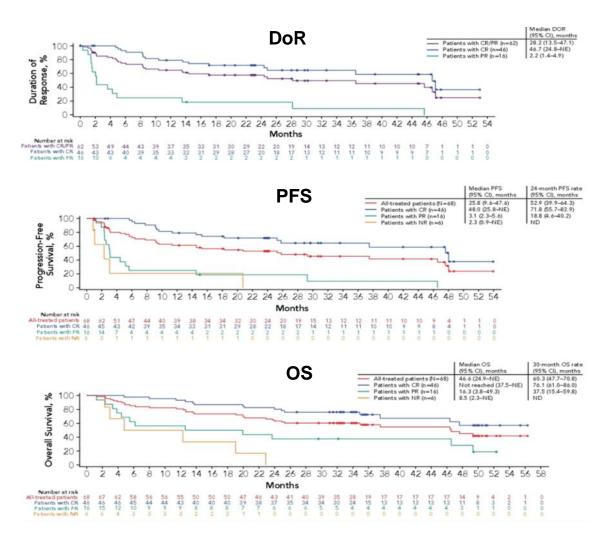

CR rate was numerically higher in the ibrutinib + BR arm vs. the placebo + BR arm (65.5% vs. 57.6%; *P*=0.057)

Treatment-emergent adverse events

- These adverse events were generally not treatment-limiting
- During the entire study period, second primary malignancies (including skin cancers) occurred in 21% of patients in the ibrutinib arm and in 19% of patients in the placebo arm
 - o MDS or AML occurred in 2 patients in the ibrutinib arm and 3 patients in placebo arm

		ib + BR 259)	Placebo + BR (n=260)		
	Any grade	Grades 3 or 4	Any grade	Grades 3 or 4	
Any bleeding, %	42.9	3.5	21.5	1.5	
Major bleeding, %	5.8	-	4.2	_	
Atrial fibrillation, %	13.9	3.9	6.5	0.8	
Hypertension, %	13.5	8.5	11.2	5.8	
Arthralgia, %	17.4	1.2	16.9	0	

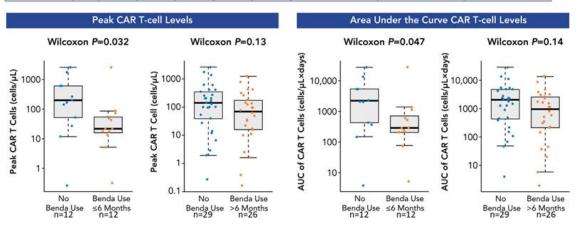
Overall survival and safety profile


Patients at risk

Ibrutinib + BR 261 239 221 208 197 187 171 163 158 152 145 138 128 118 70 25 0 Placebo + BR 262 244 223 212 203 197 188 177 171 165 159 154 147 137 90 31 2

Cause of death, n (%)	Ibrutinib + BR (n=261)	Placebo + BR (n=262)	
Death due to PD and TEAEs	58 (22.2)	70 (26.7)	
Death due to PD	30 (11.5)	54 (20.6)	
Death due to TEAEs	28 (10.7)	16 (6.1)	
Death during post- treatment follow-up period excluding PD	46 (17.6)	37 (14.1)	
Total deaths	104 (39.8)	107 (40.8)	

- Death due to COVID-19 occurred in 3 patients in the ibrutinib arm during the TEAE period and in 2 patients in the placebo arm after the TEAE period.
- The most common Grade 5 TEAE was infections in the ibrutinib and placebo arms: 9 vs. 5 patients, respectively. Grade 5 TEAE of cardiac disorders occurred in 3 vs. 5 patients, respectively.
- Exploratory analysis of cause-specific survival including only deaths due to PD or TEAEs showed an HR of 0.88.


3-year follow-up of outcomes with KTE-X19 in patients with R/R MCL in ZUMA-2

DoR, duration of response; OS, overall survival; PFS, progression-free survival. Wang M *et al.* Oral presentation at ASCO 2022; Chicago, IL, USA, June 3–7, 2022 (Abstract 7518).

Efficacy and durability outcomes in patients by MRD status

	N	ORR, n (%)	CR, n (%)	PR, n (%)	SD, n (%)	PD, n (%)	mDOR, mo (95% CI) [n]	mPFS, mo (95% CI) [n]	mOS, mo (95% CI) [n]
MRD status at Month 6									
Positive	4	3 (75)	2 (50)	1 (25)	0 (0)	1 (25)	6.1 (5.4–NE) [3]	7.1 (0.9-NE) [4]	27.0 (13.5–NE) [4]
Negative	15	15 (100)	14 (93)	1 (7)	0	0	NR (10.4–NE) [15]	NR (11.3-NE) [15]	NR (46.4–NE) [15]

- Long-term safety was manageable, with only 3% of AEs of interest occurring during this longer follow-up, few late-onset events, and no new CRS
- DOR, PFS, and OS were not reached in patients with MRD-negativity at 6 months, suggesting MRD-negativity may predict for a longer response duration, although sample size of this exploratory analysis was limited and further investigation is warranted
- Results of an exploratory post hoc analysis suggest that bendamustine use shortly before leukapheresis requires careful consideration due to its potential effects on patient T-cell fitness and CAR T-cell expansion
 - Although a majority of patients (54%) in the overall ZUMA-2 population had prior bendamustine, it may be advantageous to consider administering the potentially curative therapy KTE-X19 after an extended period following bendamustine exposure, in order to obtain a quality immune response and maximize the benefit of KTE-X19

Summary

- Promising data for bispecific antibodies (anti-CD20×CD3) was reported from two Phase 2 trials
 - Fixed-duration glofitamab induced durable CRs in patients with heavily pre-treated and refractory DLBCL¹
 - Epcoritamab demonstrated clinically meaningful efficacy in a highly refractory LBCL patient population²
- Axi-Cel demonstrated superior efficacy versus second-line SoC in elderly patients with R/R LBCL³
- In the Phase III SHINE study, ibrutinib plus BR and R maintenance significantly improved PFS rates compared with standard chemoimmunotherapy in older patients with TN MCL⁴
- KTE-X19 induced durable long-term responses with a manageable safety and low late relapse potential in R/R MCL⁵

axi-cel, axicabtagene ciloleucel; BR, bendamustine and rituximab; CAR-T, chimeric antigen receptor T-cell; CD, cluster of differentiation; DLBCL, diffuse large B-cell lymphoma; LBCL, large B-cell lymphoma; MCL, mantle cell lymphoma; PFS, progression-free survival; R/R, relapsed/refractory; SoC, standard of care.

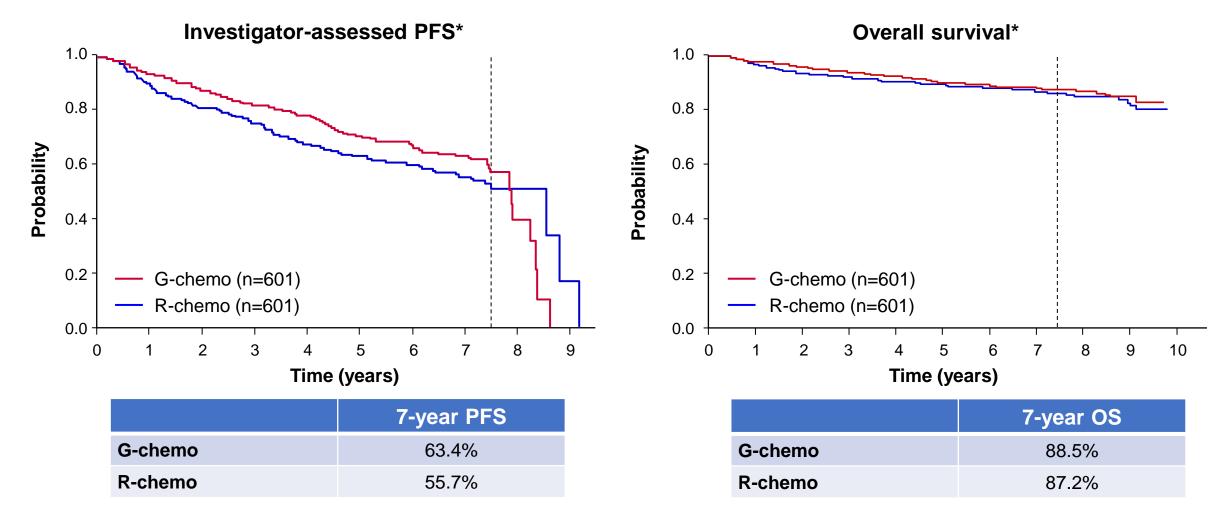
^{1.} Dickinson M et al. Oral presentation at ASCO 2022; Chicago, IL, USA, June 3–7, 2022 (Abstract 7500). 2. Thieblemont C et al. Oral presentation at EHA 2022; Vienna, Austria, June 9–17, 2022 (Abstract LB2364).

^{3.} Westin J et al. Oral presentation at ASCO 2022; Chicago, IL, USA, June 3–7, 2022 (Abstract 7548). 4. Wang M et al. Oral presentation at ASCO 2022; Chicago, IL, USA, June 3–7, 2022 (Abstract LBA7502).

^{5.} Wang M et al. Oral presentation at ASCO 2022; Chicago, IL, USA, June 3-7, 2022 (Abstract 7518).

Highlights in indolent lymphomas

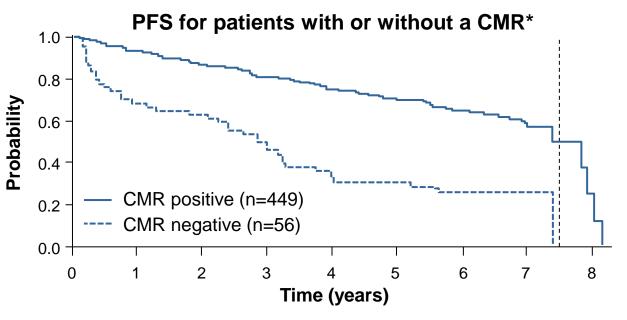
Professor Véronique Leblond Pitié-Salpêtrière Hospital and Sorbonne University, France

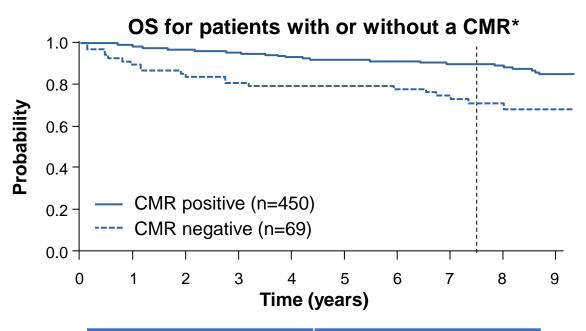

Disclosures

- Speakers bureau: AbbVie, BeiGene, Gilead, Janssen, and Roche
- Board: AbbVie, AstraZeneca, Gilead, Janssen-Cilag, MSD, and Roche
- Honoraria: AbbVie, Amgen, AstraZeneca, BeiGene, Gilead, Janssen-Cilag, Lilly, MSD, and Roche

MSD, Merck Sharp and Dohme.

Follicular lymphoma


The GALLIUM study: Obinutuzumab plus chemotherapy vs. rituximab plus chemotherapy in untreated FL


^{*}Event-free probabilities became unreliable after 7 years because only 10%–20% of patients remained in follow-up. chemo, chemotherapy; FL, follicular lymphoma; G, obinutuzumab; OS, overall survival; PFS, progression-free survival; R, rituximab. Townsend W *et al.* Oral presentation at EHA 2022; Vienna, Austria, June 9–17, 2022 (Abstract S206).

The GALLIUM study: The importance of a complete metabolic response

Patients from both treatment groups with a PET scan at EOI were retrospectively assessed for response

	7-year PFS
CMR positive	57.2%
CMR negative	26.5%

	7-year OS
CMR positive	90.2%
CMR negative	73.2%

^{*}Event-free probabilities became unreliable after 7 years because only 10%–20% of patients remained in follow-up.

CMR, complete metabolic response; EOI, end of induction; OS, overall survival; PET, positron emission tomography; PFS, progression-free survival.

Townsend W *et al.* Oral presentation at EHA 2022; Vienna, Austria, June 9–17, 2022 (Abstract S206).

The GALLIUM study: Tolerability

Mortality by chemotherapy combination:

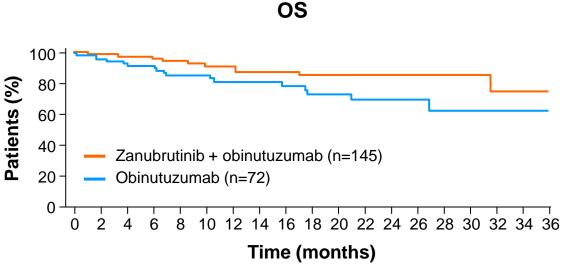
• G-CHOP: 2.6%; R-CHOP: 2.5%

• G-CVP: 1.7%; R-CVP: 1.8%

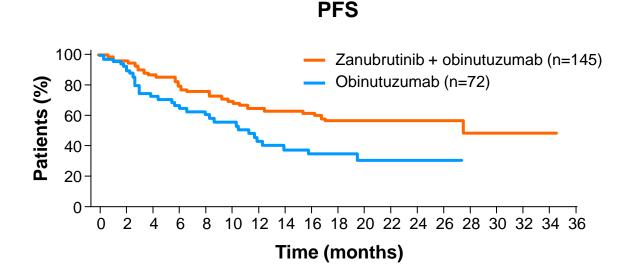
• G-Benda: 5.9%; R-Benda: 6.2%

Second cancers:

• G-chemo: 13.1%


• R-chemo: 9.9%

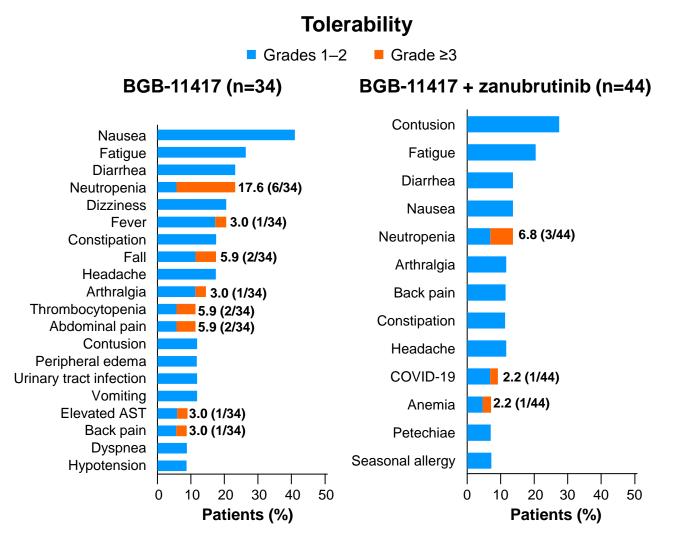
	Induction period		Maintenance period		Post-treatment follow-up period	
	G-chemo	G-chemo R-chemo		R-chemo	G-chemo	R-chemo
Neutropenia (Grade ≥3), %	40.5	37.4	18.5	12.0	3.5	1.7
Infections (Grade ≥3), %	7.6	7.5	12	10.3	8.7	5.8
Infusion-related reactions (Grade ≥3), %	12.1	7.2	0.7	0.4	0	0
All toxicities (Grade ≥3), %	61.8	58.6	40	33.1	21.3	15.7


The ROSEWOOD study

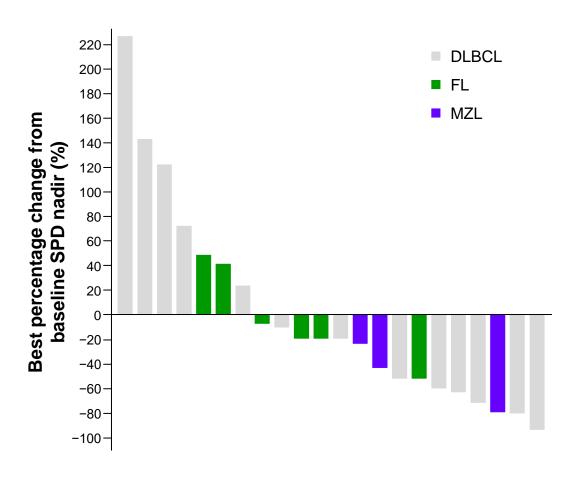
Zanubrutinib plus obinutuzumab vs. obinutuzumab in R/R FL

- The primary endpoint of a superior ORR was met:
 - o ORR = 68.3% with zanubrutinib plus obinutuzumab vs. 45.8% with obinutuzumab

	Zanubrutinib + obinutuzumab	Obinutuzumab
Median (95% CI)	NE (31.4-NE)	NE (26.8-NE)
HR (95% CI)	0.44 (0.22–0.88); <i>P</i> =0.0177	



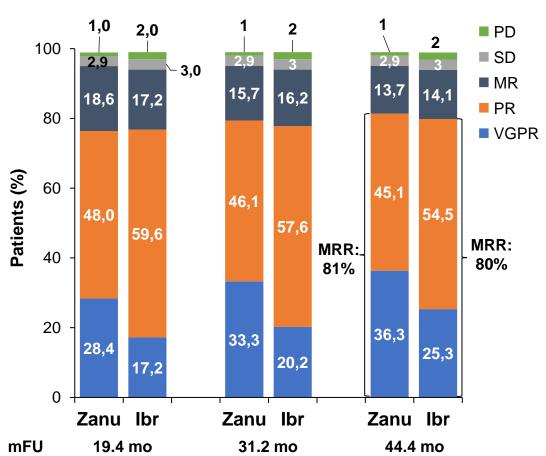
	Zanubrutinib + obinutuzumab	Obinutuzumab
Median (95% CI)	27.4 (16.1-NE)	11.2 (6.5–15.7)
HR (95% CI)	0.51 (0.32–0.8	81); <i>P</i> =0.0040


The ROSEWOOD study: Tolerability

	Zanubrutinib plus ob	oinutuzumab (n=143)	Obinutuzur	mab (n=71)
	All grades	Grade ≥3	All grades	Grade ≥3
Patients with TEAE, %	92.3	53.8	88.7	47.9
Thrombocytopenia	34.3	14.0	23.9	7.0
Neutropenia	27.3	22.4	25.4	19.7
Diarrhea	16.1	2.8	16.9	0.0
Fatigue	14.0	1.4	11.3	0.0
Constipation	13.3	0.0	7.0	0.0
Cough	11.9	0.0	11.3	0.0
Fever	11.2	0.0	19.7	0.0
Dyspnea	10.5	1.4	9.9	0.0
Anemia	9.1	4.2	9.9	5.6
Nausea	8.4	0.0	12.7	0.0
Pruritus	7.0	0.0	9.9	0.0
Infusion-related reactions	2.8	0.7	9.9	4.2
AEs of specific interest, %				
Fibrillation/flutter	2.1	0.7	1.4	0.0
Hypertension	3.5	0.7	4.2	1.4
Hemorrhage	26.6	1.4	8.5	0.0
Major hemorrhage	1.4	1.4	1.4	0.0
Infections	47.6	18.9	36.6	12.7
Secondary cancers	6.3	3.5	2.8	0.0

Phase I preliminary data for the BCL2 inhibitor BGB-11417 vs. BGB-11417 plus zanubrutinib in patients with B-cell malignancies

Tumor response in patients with NHL receiving BGB-11417 monotherapy



AST, aspartate aminotransferase; BCL, B-cell lymphoma; COVID-19, coronavirus disease 2019; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MZL, marginal zone lymphoma; NHL, non-Hodgkin lymphoma; SPD, sum of the products of diameters. Opat S et al. Poster P687 presented at EHA 2022; Vienna, Austria, June 9–17, 2022.

Waldenström's macroglobulinemia

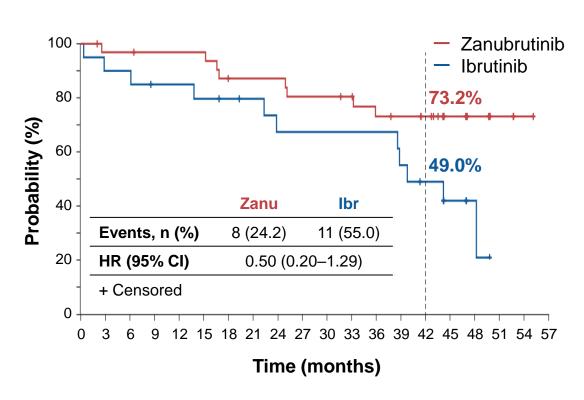
ASPEN: Long-term follow-up of zanubrutinib vs. ibrutinib in patients with WM

Responses over time to zanubrutinib (n=102) vs. ibrutinib (n=99)

	Zanubrutinib	Ibrutinib
CR + VGPR, %	36.6	25.3
Median time to CR + VGPR, mo	6.7	16.6
42-month OS, %	87.5	85.2

CR, complete response; Ibr, ibrutinib; mFU, median follow-up; mo, months; MR, minimal response; MRR, major response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease; VGPR, very good partial response; WM, Waldenström's macroglobulinemia; Zanu, zanubrutinib. Dimopoulos M *et al.* Poster P1161 presented at EHA 2022; Vienna, Austria, June 9–17, 2022.

ASPEN: Outcomes according to CXCR4 mutational status


Responses according to CXCR4 status

	CXCF	₹4 MUT*	CXCR4 ^{WT} *		
	Zanu (n=33)	lbr (n=20)	Zanu (n=65)	lbr (n=72)	
VGPR or better, n (%)	7 (21.2)	2 (10.0)	29 (44.6)	22 (30.6)	
Major response, n (%)	26 (78.8)	13 (65.0)	54 (83.1)	61 (84.7)	
Overall response, n (%)	30 (90.9)	19 (95.0)	63 (96.9)	68 (94.4)	
Median time to major response, months	3.4	6.6	2.8	2.8	
Median time to VGPR, months	11.1	31.3	6.5	11.3	

Bold blue text indicates >10% difference between arms.

Data cut-off: October 31, 2021.

PFS in patients with CXCR4^{MUT}

^{*}CXCR4 mutation determined by NGS; 92 ibrutinib-treated and 98 zanubrutinib-treated patients had NGS results available.

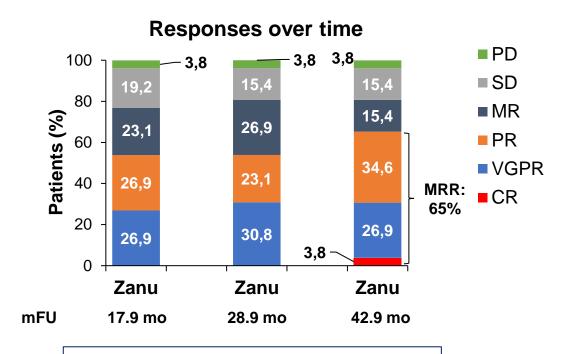
CI, confidence interval; HR, hazard ratio; Ibr, ibrutinib; MUT, mutant; NGS, next-generation sequencing; PFS, progression-free survival; VGPR, very good partial response; WT, wild-type; Zanu, zanubrutinib.

Dimopoulos M et al. Poster P1161 presented at EHA 2022; Vienna, Austria, June 9–17, 2022.

ASPEN: Long-term safety data

Long-term safety and tolerability: AEs of interest

Data cut-off: October 31, 2021.


AE, adverse event.

Dimopoulos M et al. Poster P1161 presented at EHA 2022; Vienna, Austria, June 9-17, 2022.

^{*}N is the number of patients who are on treatment in each time interval or who discontinued treatment, but the time from the first dose date to the earliest date (last dose date +30 days, initiation of new anticancer therapy, end of study, death, or cut-off date) is within the time interval.

ASPEN: Long-term follow-up of zanubrutinib in MYD88WT WM

Outcomes: Cohort 2 MYD88WT (n=28)

At 42 months:

PFS: 53.8% (95% CI: 33.3–70.6)

• OS: 83.9% (95% CI: 62.6–93.7)

Overall safety summary

Catagory n (9/)	Cohort 2
Category, n (%)	Zanubrutinib
Patients with ≥1 AE	26 (92.9)
Grade ≥3	20 (71.4)
Serious	14 (50.0)
AE leading to death	3 (10.7)
AE leading to treatment discontinuation	6 (21.4)
AE leading to dose reduction	2 (7.1)
AE leading to dose held	18 (64.3)
AE related to COVID-19	2 (7.1)

AE, adverse event; CI, confidence interval; COVID-19, coronavirus disease 2019; CR, complete response; mFU, median follow-up; mo, months; MR, minimal response; MRR, major response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease; VGPR, very good partial response; WM, Waldenström's macroglobulinemia; WT, wild-type; Zanu, zanubrutinib. Dimopoulos M *et al.* Poster P1161 presented at EHA 2022; Vienna, Austria, June 9–17, 2022.

Acalabrutinib in WM:* 5-year follow-up of a Phase II, single-arm study

Acalabrutinib monotherapy

	Follow-up		
	27.4 months	63.7 months	
ORR TN	93%	93%	
MRR TN	79%	79%	
ORR R/R	93%	95%	
MRR R/R	78%	82%	
Median follow-up: 63.7 months ✓ Median PFS TN: Not reached R/R: 68 months ✓ Estimated 66-month PFS TN: 84% R/R: 52%			
	✓ Estimated 66-month OS TN: 91%		

106 patients: 14 TN, 92 R/R; median prior therapies: 2 (range 1–7)

At 63.7 months:

- TN patients on treatment: 50% (discontinuation for AEs: 29%; PD: 7%)
- R/R patients on treatment: 47% (discontinuation for AEs: 16%; PD: 22%)

	TN (n=14)		R/R (ı	n=92)
	Any grade	Grades 3-4	Any grade	Grades 3–4
Common AEs (≥30% of patients), n (%)				
Headache	5 (36)	0	39 (42)	0
Diarrhea	6 (43)	0	35 (38)	2 (2)
Fatigue	3 (21)	0	29 (31)	2 (2)
Arthralgia	5 (36)	0	29 (31)	1 (1)
Nausea	5 (36)	0	21 (23)	2 (2)
Dizziness	5 (36)	0	23 (25)	0
Selected ECI, n (%)				
Atrial fibrillation/flutter	1 (7)	0	11 (12)	2 (2)
Hemorrhage	10 (71)	0	56 (61)	6 (6)
Hypertension	0	0	7 (8)	4 (4)

R/R: 71%

^{*}Acalabrutinib is not approved for the treatment of WM.

AE, adverse event; ECI, event of clinical interest; MRR, major response rate; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; R/R, relapsed/refractory; TN, treatment-naive; WM, Waldenström's macroglobulinemia.

Bispecific antibodies across indications

Bispecific CD20×CD3 antibodies

Molecule	Structure	Drug delivery	Clinical development
Mosunetuzumab	Full-length, humanized IgG1 CD20:CD3 (1:1)	IV or SC every 21 days	 Phase I/II mosunetuzumab ± atezolizumab in R/R B-cell NHL and CLL (NCT02500407) Phase II SC mosunetuzumab in R/R B-cell NHL (NCT05207670) Phase III mosunetuzumab + lenalidomide vs. R² in R/R FL (CELESTIMO; NCT04712097)
Epcoritamab	Full-length, humanized IgG1 CD20:CD3 (1:1)	SC every 28 days	 Phase I/II epcoritamab in R/R B-cell NHL (EPCORE NHL-1; NCT03625037) Phase I/II epcoritamab + combinations in R/R B-cell NHL (EPCORE NHL-2; NCT04663347) Phase III epcoritamab + R² vs. R² in R/R FL (EPCORE FL-1; NCT05409066)
Odronextamab	Hinge-stabilized, humanized IgG4 CD20:CD3 (1:1)	IV or SC weekly, then maintenance every 15 days	 Phase I odronextamab in R/R B-cell NHL (ELM-1; NCT02290951) Phase II odronextamab in R/R B-cell NHL (ELM-2; NCT03888105)
Glofitamab	Full-length, humanized IgG1 CD20:CD3 (2:1)	IV every 21 days	 Phase I/II glofitamab ± obinutuzumab in R/R B-cell NHL (NCT03075696) Phase Ib/II glofitamab + polatuzumab vedotin or atezolizumab in R/R B-cell NHL (NCT03533283)

Bispecific CD20×CD3 antibodies

Outcomes in subsets of patients with indolent lymphomas

Molecule	Description	Patients, n	No. of previous therapies	ORR, n (%)	CR/CMR, n (%)	Median DoR, mo
Mosunetuzumab ¹	Phase I/II study of the safety and efficacy of mosunetuzumab in patients with R/R B-cell NHL (NCT02500407)	68	≥1	45 (66)	CR: 33 (49)	16.8
Epcoritamab ²	Phase I/II study of epcoritamab in patients with R/R B-cell NHL (EPCORE NHL-1; NCT03625037)	10	≥2	9 (90)	CR: 5 (50)	_
Odronextamab ³	Phase I dose-escalation and dose-expansion study of odronextamab in patients with R/R B-cell NHL (ELM-1; NCT02290951)	32	≥2	29 (91)	CMR: 23 (72)	15.8
Glofitamab ⁴	Phase I/II study of glofitamab in patients with R/R B-cell NHL (NCT03075696)	53	≥1	43 (81)	CMR: 37 (70)	10.8

Data in the table are sourced from different studies; the limitations of cross-study comparisons apply.

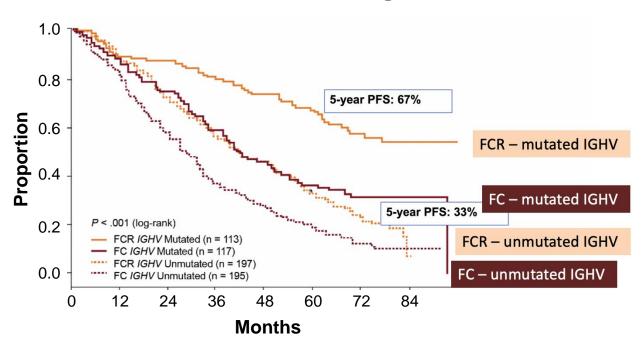
Summary

- Obinutuzumab plus chemotherapy demonstrated a long-term benefit over rituximab plus chemotherapy in patients with previously untreated FL in the GALLIUM study¹
- Obinutuzumab plus zanubrutinib demonstrated superior efficacy to obinutuzumab monotherapy in R/R FL in the ROSEWOOD study²
- Promising Phase I preliminary data have been reported for the BCL2 inhibitor BGB-11417 in patients with indolent B-cell malignancies³
- In the long-term follow-up of the ASPEN trial of zanubrutinib vs. ibrutinib:⁴
 - There was a trend toward a deeper response with zanubrutinib in all patients and in the subset of patients with CXCR4 mutations
 - 30.7% of patients with MYD88^{WT} achieved a VGPR or CR with zanubrutinib treatment in the single-arm substudy
- There were durable responses and a favorable safety profile with acalabrutinib in patients with TN or R/R WM^{5,6}
- Encouraging clinical data for bispecific CD20×CD3 antibodies have been reported from several ongoing trials for patients with R/R B-cell NHL⁷⁻¹⁰

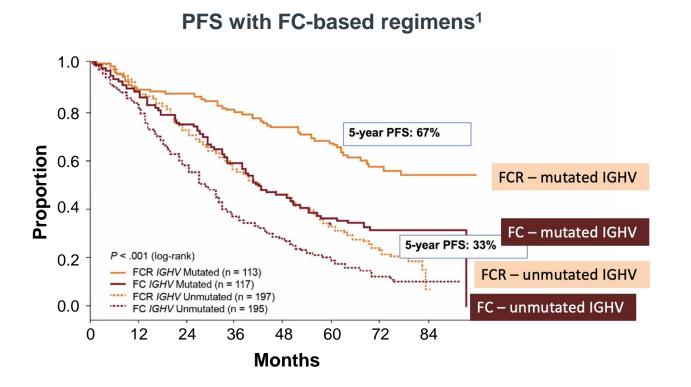
BCL, B-cell lymphoma; CR, complete response; FL, follicular lymphoma; NHL, non-Hodgkin lymphoma; R/R, relapsed/refractory; TN, treatment-naive; VGPR, very good partial response; WM, Waldenström's macroglobulinemia; WT, wild-type.

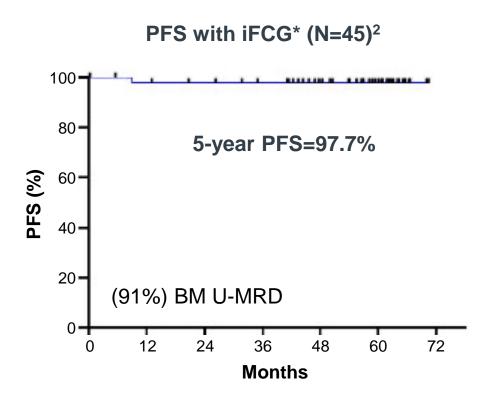
^{1.} Townsend W *et al.* Oral presentation at EHA 2022; Vienna, Austria, June 9–17, 2022 (Abstract S206). 2. Zinzani PL *et al.* Oral presentation at EHA 2022; Vienna, Austria, June 9–17, 2022 (Abstract S205). 3. Opat S *et al.* Poster P687 presented at EHA 2022; Vienna, Austria, June 9–17, 2022. 4. Dimopoulos M *et al.* Poster P1161 presented at EHA 2022; Vienna, Austria, June 9–17, 2022. 5. Owen RG *et al.* Lancet Haematol 2020; 7 (2): e112–e121. 6. Owen R *et al.* Poster P1130 presented at EHA 2022; Vienna, Austria, June 9–17, 2022. 7. Budde LE et al. J Clin Oncol 2022; 40 (5): 481–491. 8. Thieblemont C et al. Oral presentation at EHA 2022; Vienna, Austria, June 9–17, 2022 (Abstract LB2364). 9. Bannerji R et al. Lancet Haematol 2022; 9 (5): e327–e339. 10. Dickinson M et al. Oral presentation at EHA 2022; Vienna, Austria, June 9–17, 2022 (Abstract T500).

Highlights in CLL


Professor Wojciech Jurczak National Research Institute of Oncology, Poland

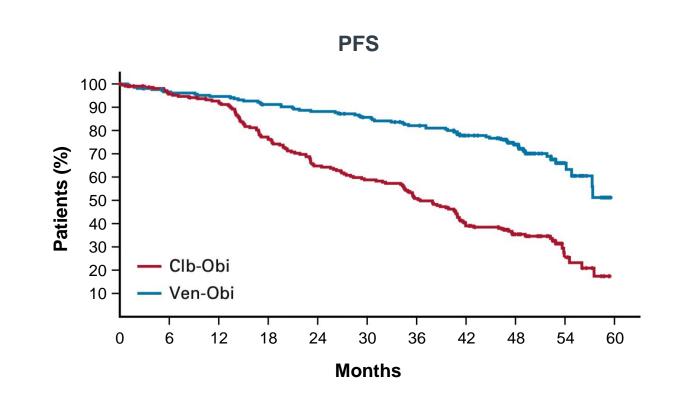
Disclosures


- Advisory boards: AstraZeneca, Beigene, Janssen, Loxo, and Meipharma
- Research Funding: AbbVie, AstraZeneca, Bayer, Beigene, Celgene, Gilead Sciences, Janssen, Loxo, Merck, MSD, Meipharma, Roche, Takeda, and TG Therapeutics,

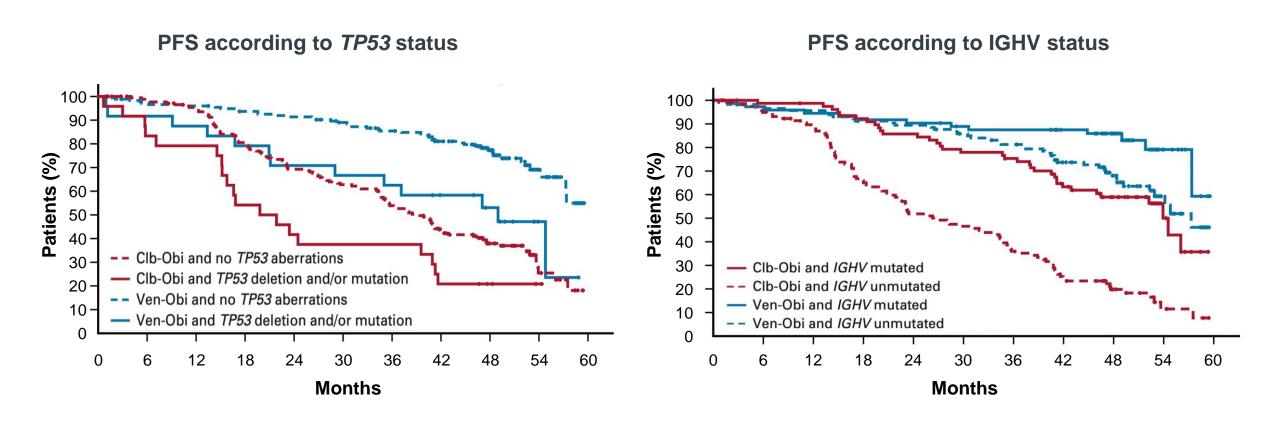

FCR in patients with low-risk CLL

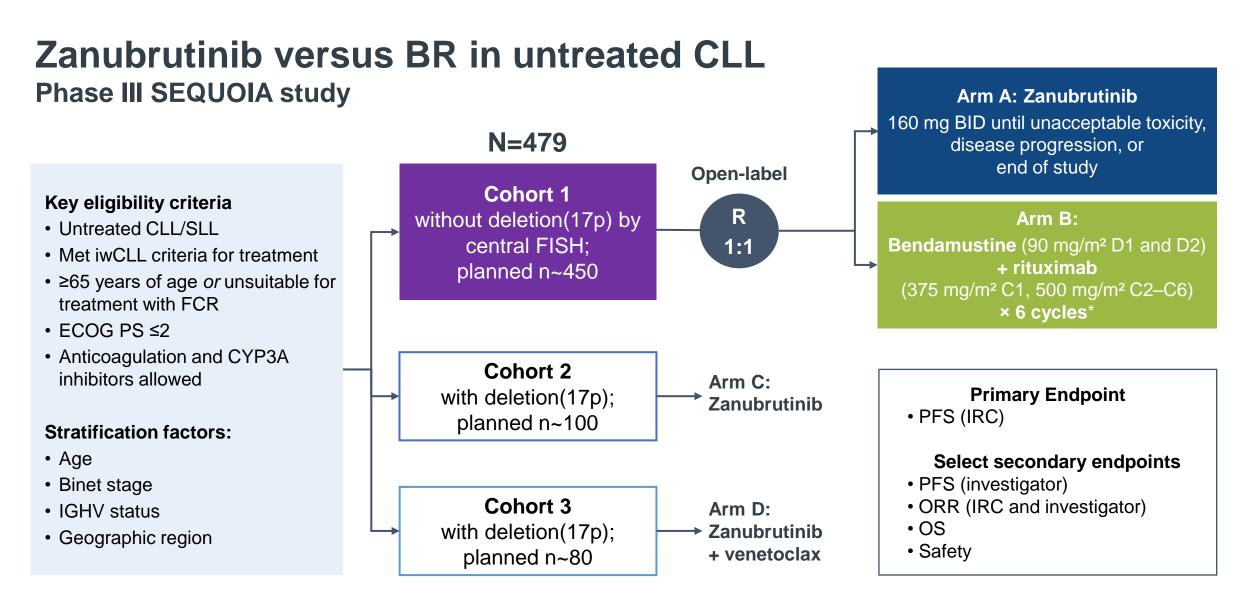
PFS with FC-based regimens¹

FCR in patients with low-risk CLL



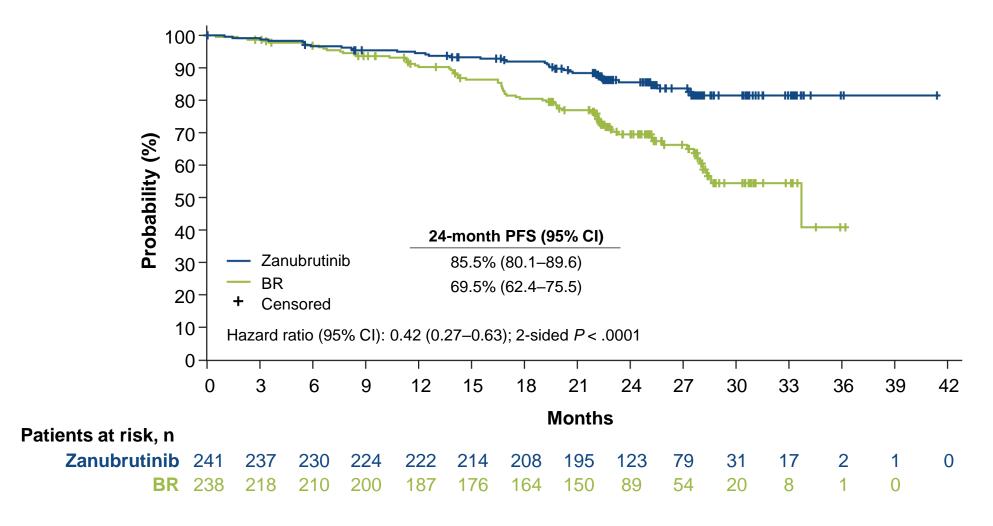
^{*}Ibrutinib, fludarabine, cyclophosphamide, and obinutuzumab (iFCG) for 3 cycles, followed by iG for 3 cycles, followed by ibrutinib monotherapy or iG for 6 months. BM, bone marrow; FC, fludarabine and cyclophosphamide; FCR, FC and rituximab; PFS, progression-free survival; U-MRD, undetectable minimal residual disease. 1. Fischer K *et al. Blood*; 127 (2): 208–215. 2. Jain N *et al.* Oral presentation at EHA 2022; Vienna, Austria, June 9–17, 2022 (Abstract S149).


CLL14 study: Venetoclax plus obinutuzumab for untreated CLL Outcomes


- >60% of patients who had received 1-year fixedduration Ven-Obi have remained in remission 4 years after end of therapy
- 1-year Ven-Obi regimen continues to be an effective fixed-duration option for patients with CLL and co-existing conditions

Venetoclax plus obinutuzumab for untreated CLL

5-year results of the randomized CLL14 study



^{*1} cycle = 28 days.

BID, twice a day; C, Cycle; CLL, chronic lymphocytic leukemia; CYP3A, cytochrome P450 3A; D, Day; ECOG PS, Eastern Cooperative Oncology Group Performance Status; FCR, fludarabine, cyclophosphamide, and rituximab; FISH, fluorescence *in situ* hybridization; IRC, independent review committee; IGHV, immunoglobulin heavy chain variable region; iwCLL, International Workshop on Chronic Lymphocytic Leukemia; R, randomization; SLL, small lymphocytic lymphoma.

Tam CS *et al.* Abstract 396 from the 63rd ASH Annual Meeting & Exposition; Atlanta, Georgia, USA, December 11–14, 2021. Beigene Medical. SEQUOIA: Results. Available at: https://www.beigenemedical.com/CongressDocuments/Tam_BGB-3111-304_ArmsAB_ASH_Presentation_2021_2.pdf. Accessed February 2022.

SEQUOIA: zanubrutinib versus BR in untreated CLL PFS per IRC assessment

SEQUOIA: zanubrutinib versus BR in untreated CLL

PFS per IRC assessment by key patient subgroups

Subgroup	Event/l Zanu	Patient BR	Favors Favors Zanu BR	Hazard ratio (95% CI), %
All Patients	36/241	71/238	—	0.42 (0.28–0.63)
Age (years) < 65 ≥ 65	6/45 30/196	19/46 52/192	→	0.25 (0.10–0.62) 0.47 (0.30–0.74)
Sex Male Female	24/154 12/87	47/144 24/94	—	0.39 (0.24–0.64) 0.45 (0.23–0.91)
Binet stage A or B C	24/171 12/70	52/168 19/70	<u> </u>	0.39 (0.24–0.64) 0.48 (0.23–1.00)
ECOG PS 0 ≥ 1	12/110 24/131	24/101 47/137	—	0.39 (0.19–0.78) 0.43 (0.26–0.71)
Bulky disease, LDi < 5 cm ≥ 5 cm	21/172 15/69	44/165 27/73	—	0.37 (0.22–0.63) 0.52 (0.27–0.97)
IGHV mutational status Mutated Unmutated	18/109 15/125	25/110 45/121	•	0.67 (0.36–1.22) 0.24 (0.13–0.43)
Cytopenias at baseline Yes No	21/102 15/139	34/109 37/129		0.55 (0.32–0.95) 0.31 (0.17–0.57)
Chromosome 11q deletion Yes No	7/43 29/198	22/46 49/192	—	0.21 (0.09–0.50) 0.50 (0.32–0.80)
			0 1	2 3

BR, bendamustine and rituximab; CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group Performance Status; IGHV, gene encoding the immunoglobulin heavy chain variable region; IRC, independent review committee; LDi, longest diameter; Zanu, zanubrutinib.

Ghia P et al. Poster P662 presented at EHA 2022; Vienna, Austria, June 9–17, 2022.

SEQUOIA: zanubrutinib versus BR in untreated CLL

Adverse event summary

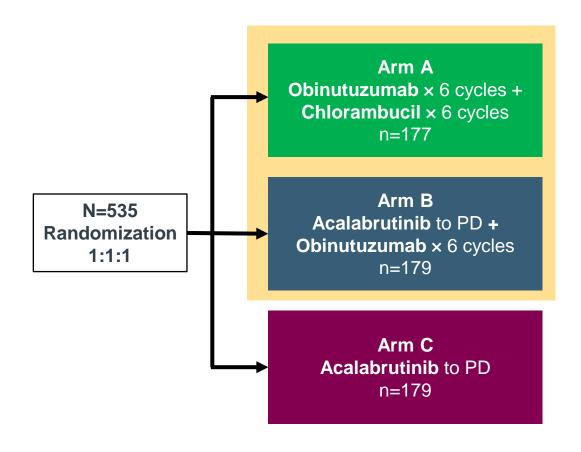
	Zanubrutinib (n = 240)	BR (n = 227)
Any AE, n (%)	224 (93.3)	218 (96.0)
Grade ≥3 AE, n (%)	126 (52.5)	181 (79.7)
Serious AE, n (%)	88 (36.7)	113 (49.8)
Fatal AE, n (%)	11 (4.6)	11 (4.8)
AE leading to dose reduction, n (%)	18 (7.5)	84 (37.4)
AE leading to dose interruption/delay, n (%)	111 (46.3)	154 (67.8)
AE leading to discontinuation, n (%)	20 (8.3)	31 (13.7)

SEQUOIA: zanubrutinib versus BR in untreated CLL

Patient-reported outcomes

	Week 12 LS mean difference* (95% CI)	<i>P</i> -value	Week 24 LS mean difference* (95% CI)	<i>P</i> -value
Global health status	0.7 (-3.3 to 4.7)	0.73	4.9 (0.9 to 9.0)	0.017
Functional domains Physical functioning Role functioning	1.0 (-1.9 to 3.9)	0.51	3.8 (0.8 to 6.7)	0.012
	4.4 (-0.5 to 9.4)	0.080	4.8 (-0.2 to 9.7)	0.061
Symptoms Diarrhea Fatigue Nausea/vomiting Pain	-1.7 (-5.4 to 2.0)	0.36	-6.2 (-10 to -2.5)	0.0012
	-3.7 (-8.1 to 0.7)	0.97	-4.5 (-8.9 to -0.1)	0.047
	-3.9 (-6.5 to -1.3)	0.0035	-4.2 (-6.8 to -1.6)	0.0015
	4.7 (0.1 to 9.3)	0.047	0.4 (-4.3 to 5.1)	0.87

^{*}LS mean difference between zanubrutinib and BR arms.
BR, bendamustine and rituximab; CLL, chronic lymphocytic leukemia; LS, least squares
Ghia P *et al.* Poster P662 presented at EHA 2022; Vienna, Austria, June 9–17, 2022.


Elevate-TN Phase 3 study in untreated CLL Study design

Key inclusion criteria

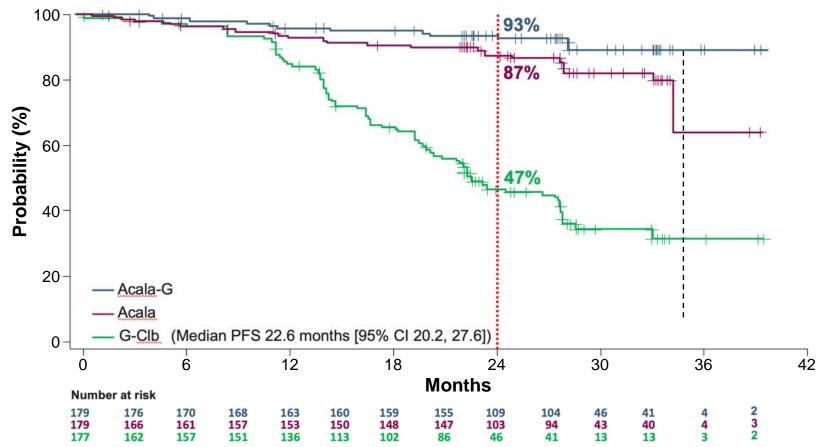
- Age ≥65 years or 18-65 years <u>and</u> ≥1 of the following criteria:
 - CrCl = 30–69 mL/min
 - o CIRS-G score >6

Stratification

- Del(17p) status (~9%)
- Geographic region
- ECOG PS (0–1 vs. 2)

Crossover was allowed upon IRC-confirmed PD from Arm A to Arm C

Primary end point

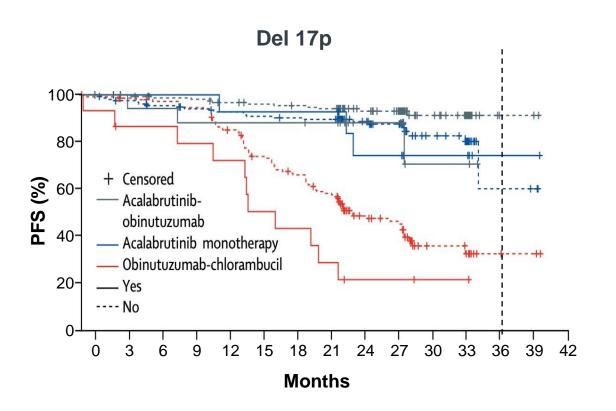

• PFS by IRC: Arm A vs B

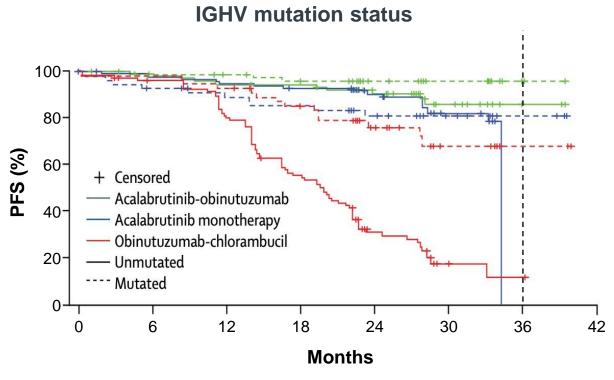
Secondary end points

- PFS by IRC: Arm A vs C
- ORR by IRC, OS, TTNT (Arm A vs B and A vs C)
- Safety

ELEVATE-TN

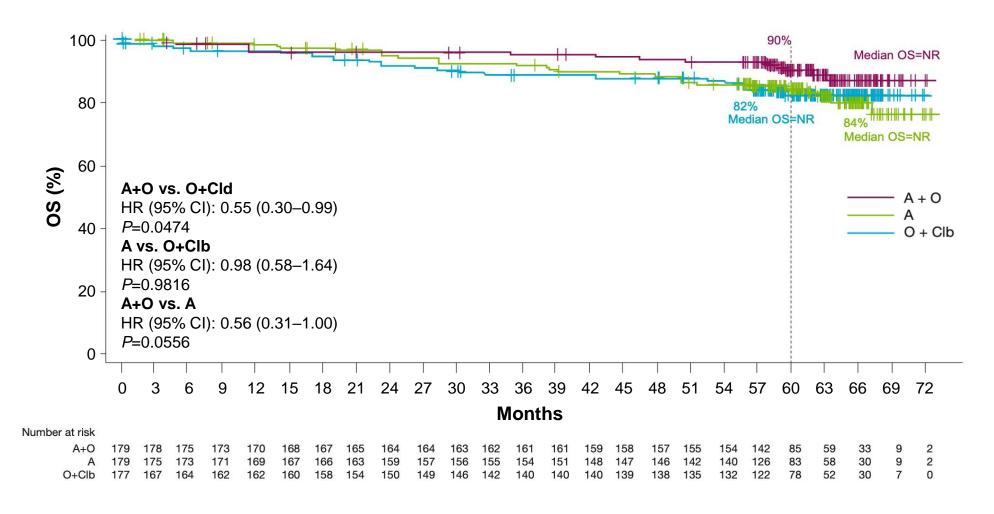
PFS per IRC assessment


	Hazard ratio (95% CI), P	
Acala-G vs. G-Clb	0.10 (0.06–0.17), <0.0001	
Acalabrutinib vs. G-Clb	0.20 (0.13–0.30), <0.0001	
Acala-G vs. acalabrutinib ^a	0.49 (0.26–0.95)	


iLLUMINATE (lbr+G) 30-mo PFS: 79%² RESONATE-2 (lbr) 24-mo PFS: 89%³

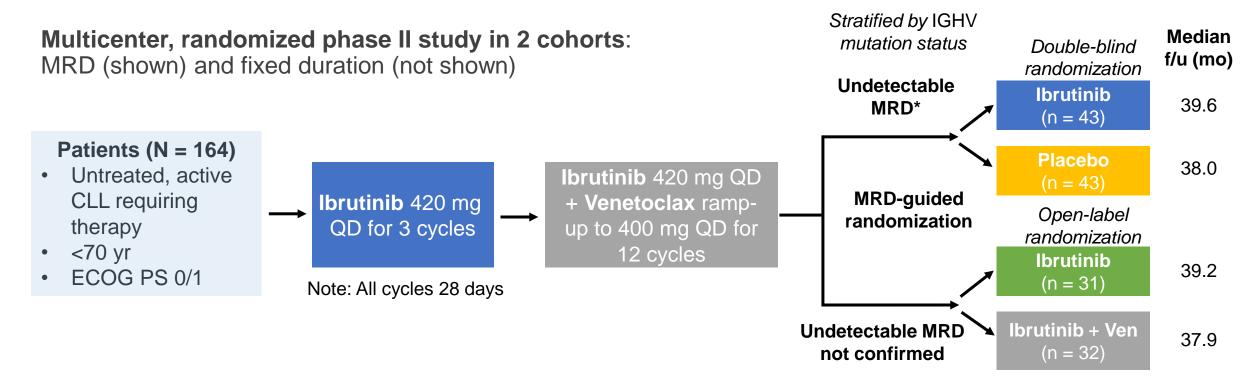
Acala, acalabrutinib; CI, confidence interval; G-Clb, obinutuzumab and chlorambucil; IRC, independent review commitee; PFS, progression-free survival. Sharman J *et al.* Poster P666 presented at EHA 2022; Vienna, Austria, June 9–17, 2022.

ELEVATE-TN


PFS in high-risk populations

ELEVATE-TN

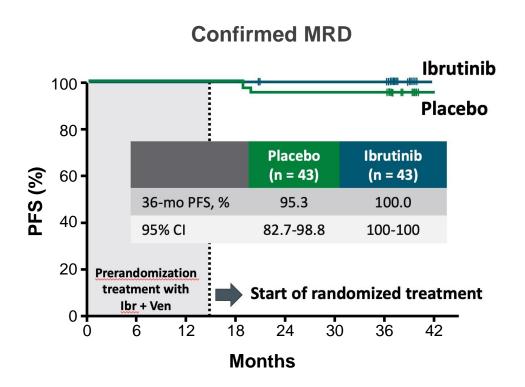
Overall survival

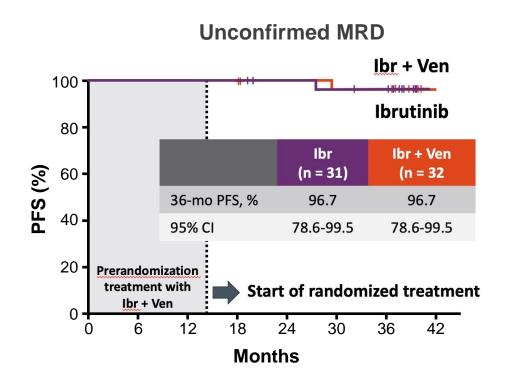

Ibrutinib plus venetoclax in untreated CLL Phase III NCRI FLAIR trial interim analysis

- Interim analysis in the first 274 patients reaching 2 years post-randomization
 - Ibrutinib n=138
 - Ibrutinib plus venetoclax n=136
- Ibrutinib plus venetoclax is an effective and well tolerated combination resulting in a high rate of MRD negativity in blood (71.3%) and marrow (65.4%) in the first 2 years of treatment

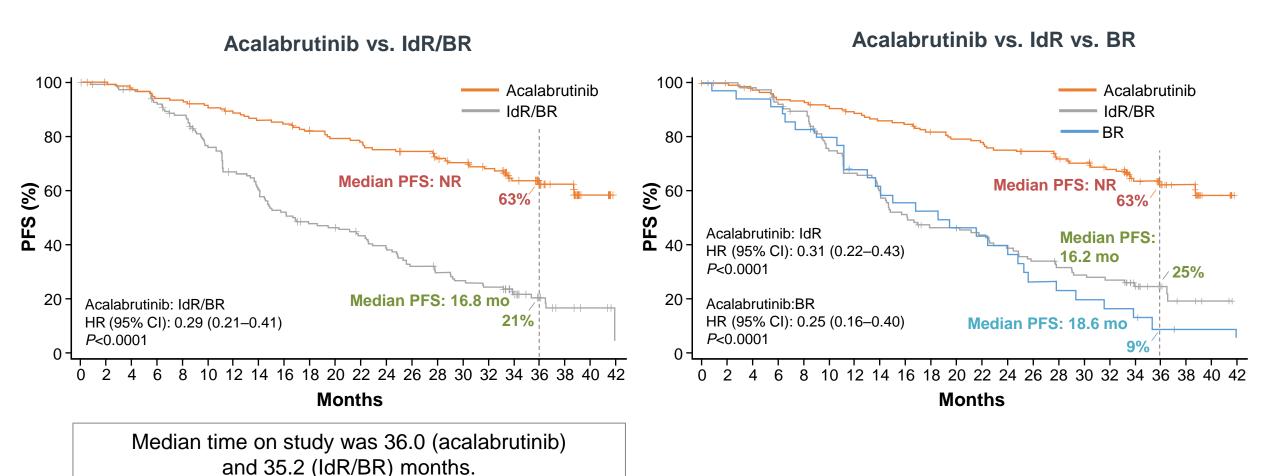
	I (n=138)	I+V (n=136)
9-months post-randomization, % (95% CI) MRD negative in the bone marrow MRD negative in the peripheral blood	0.0 (0.00–2.64) 0.0 (0.00–2.64)	36.0 (27.98–44.70) 41.2 (32.81–49.93)
24 months post-randomization, % (95% CI) MRD negative in the bone marrow MRD negative in the peripheral blood	0.0 (0.00–2.64) 0.0 (0.00–2.64)	65.4 (56.81–73.38) 71.3 (62.95–78.75)

CAPTIVATE (MRD cohort)

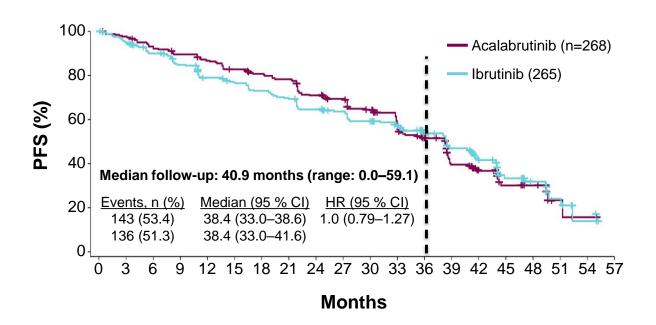

Study design

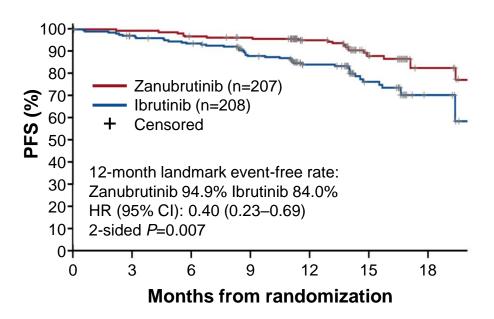


- Primary endpoint analysis: 95% to 100% 1-yr DFS rate in patients with confirmed undetectable MRD¹
- Secondary endpoints: undetectable MRD, response, PFS, safety²


CAPTIVATE (MRD cohort) 3-year PFS

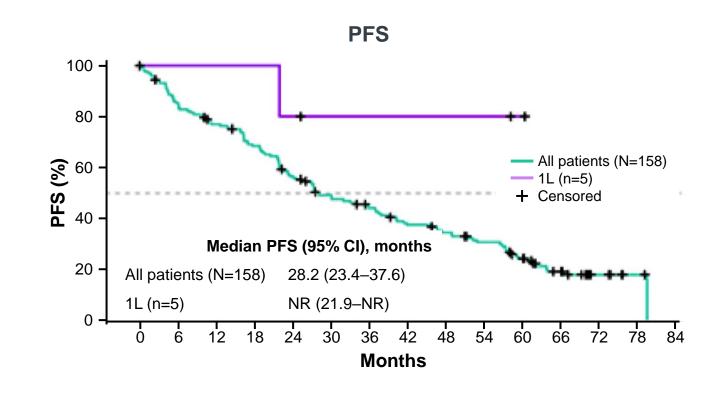
- 1 new PFS event (PD in uMRD arm) in 1-year since primary analysis
- 3-year OS: 99% overall (97%–100% across randomized arms)


Investigator-assessed PFS with acalabrutinib, IdR, and BR

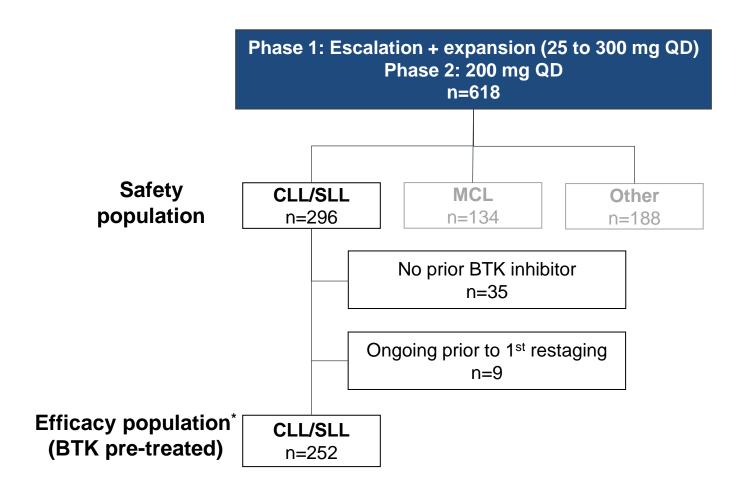

ELEVATE R/R and ALPINE

Next-generation BTKis vs. ibrutinib

ELEVATE R/R
Acalabrutinib vs. ibrutinib (N=533)¹



ALPINE Zanubrutinib vs. ibrutinib (N=652)²



Venetoclax monotherapy in del(17p) CLL Phase II trial: 6-year follow-up and genomic analyses

- ORR: 77% (N=158)
 - Median time on study, 26.6 months
- At a median follow-up of 70 months:
 - 48% of patients were alive
 - 24% were progression-free
 - 16% remained on venetoclax

Phase 1/2 BRUIN study of pirtobrutinib

Phase 1 3+3 design

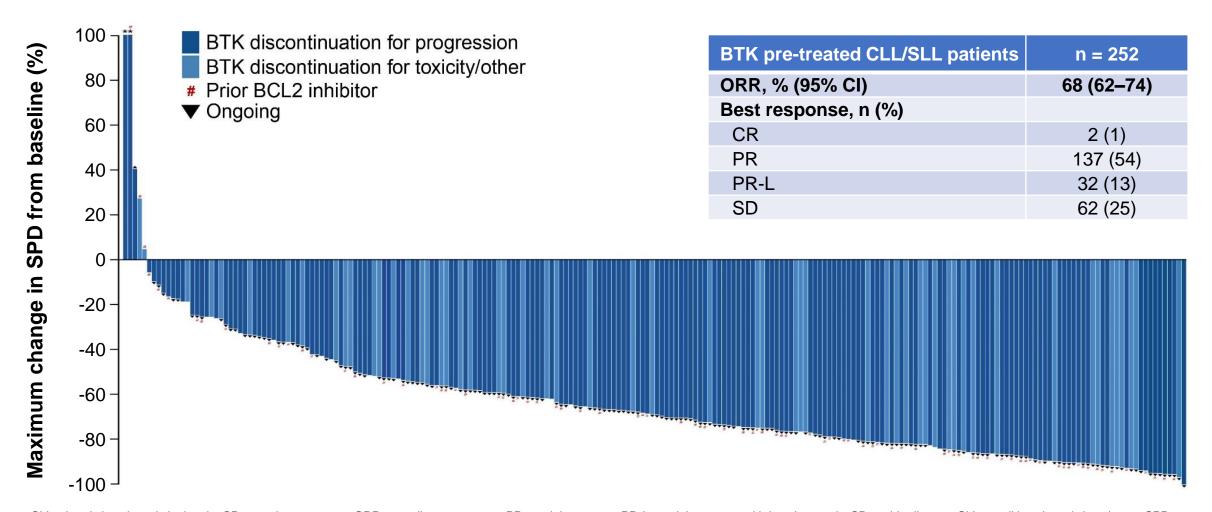
- 28-day cycles
- Intra-patient dose escalation allowed
- Cohort expansion permitted at doses deemed safe

Eligibility

- Age ≥18 years
- ECOG PS 0-2
- CLL or other B-cell NHL
- Active disease and in need of treatment
- · Previously treated

Key endpoints

- Safety/tolerability
- Determine MTD and recommended phase 2 dose
- Pharmacokinetics
- Efficacy according to ORR & DoR based on disease criteria (iwCLL, IWWM, Lugano)

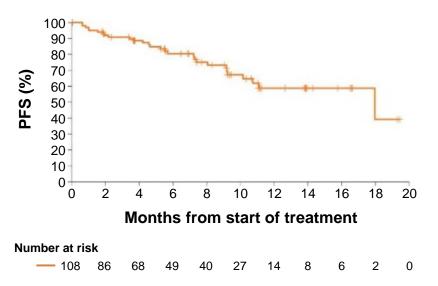

Data cutoff: 16 July 2021. *Efficacy evaluable patients are those who had at least one post-baseline response assessment or had discontinued treatment prior to first post-baseline response assessment.

CLL, chronic lymphocytic leukemia; DoR, duration of response; ECOG PS, Eastern Cooperative Oncology Group Performance Status; iwCLL, International Workshop on Chronic Lymphocytic Leukemia; MTD, maximum tolerated dose; NHL, non-Hodgkin's lymphoma; ORR, overall response rate; SLL, small lymphocytic lymphoma.

Mato AR et al. Oral presentation at EHA 2022; Vienna, Austria, June 9–17, 2022 (Abstract S147).

BRUIN study

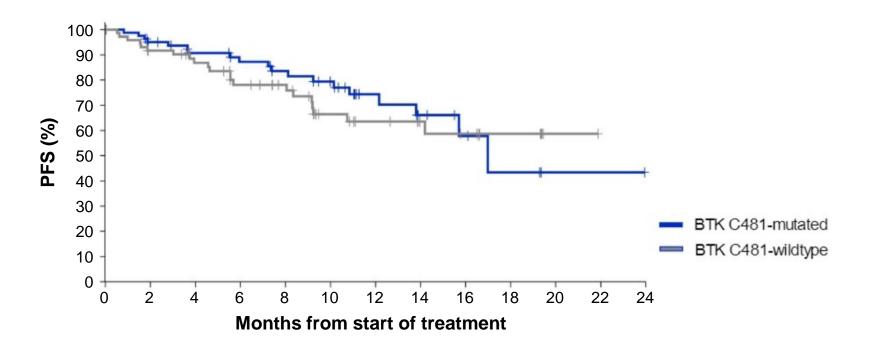
Responses in patients with CLL/SLL



CLL, chronic lymphocytic leukemia; CR, complete response; ORR, overall response rate; PR, partial response with lymphocytosis; SD, stable disease; SLL, small lymphocytic lymphoma; SPD, sum of the products of diameters.

Mato AR et al. Oral presentation at EHA 2022; Vienna, Austria, June 9-17, 2022 (Abstract S147).

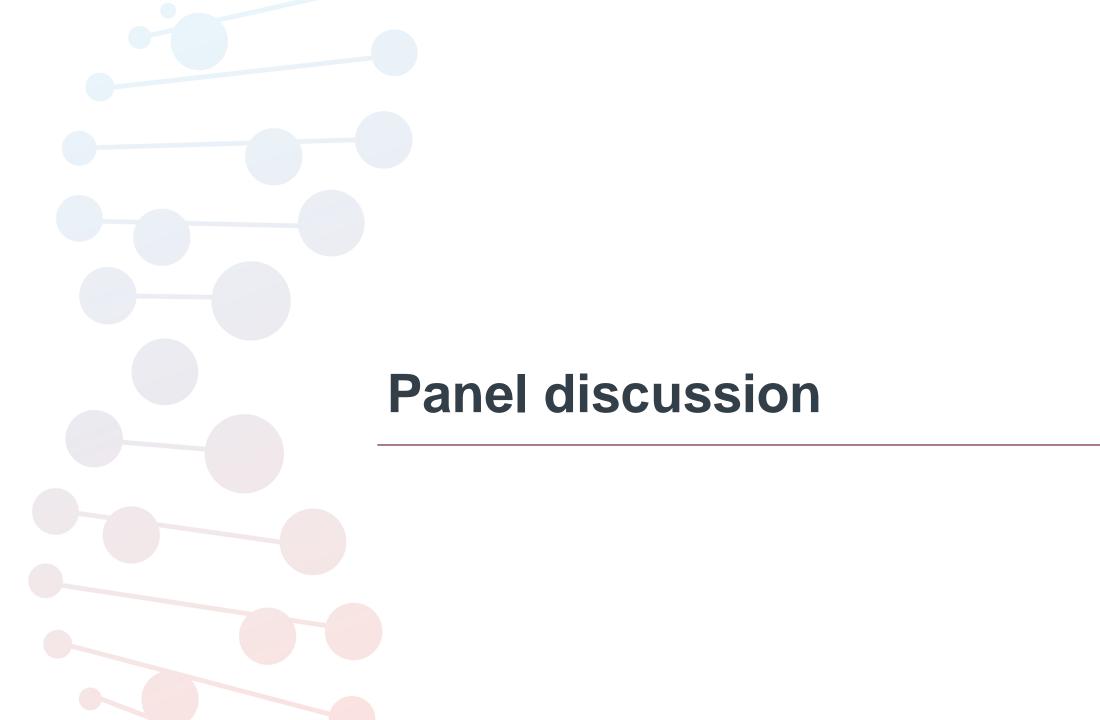
BRUIN study Updated results


PFS in patients pre-treated with at least a BTKi and BLC2i (median prior lines of therapy=5)

		ORR, % (95% CI)	Median lines of prior therapy, median (range)	Treated, n	Efficacy- evaluable, n
Patient subgroups	All BTKi pre-treated	⊢⊕ ⊣	3 (1–11)	261	252
	≥12 months follow-up	⊢←	3 (1–11)	119	119
	Del(17p) and/or TP53 ^{mut}	⊢	3 (1–10)	77	76
	BTK C481 and PLCG2 mutations	——	3 (1–6)	26	26
Prior therapy	BTKi + BCL2i	⊢•⊣	5 (1–11)	108	102
	BTKi + Pl3Ki	⊢	5 (2–11)	51	45
	BTKi+chemotherapy+ anti-CD20	⊢●⊣	4 (2–11)	200	192
	BTKi+chemotherapy+ anti-CD20+BCL2i	⊢●⊣	5 (3–11)	92	86
	BTKi+chemotherapy +anti-CD20+BCL2i+Pl3Ki	——	6 (3–11)	33	27
Reason to discontinue prior BTKi	Progression	⊢●⊣	4 (1–11)	196	190
	Toxicity/other	⊢	3 (1–11)	65	62

BRUIN study Impact of BTK C481 mutation status

PFS according to BTK C481 mutation status in patients who progressed during treatment with a prior BTK inhibitor


BRUIN study Safety outcomes

	All doses and patients (n=618)								
	TEAEs in ≥15% of patients, %					TRAEs, %			
AEs, %	Grade 1	Grade 2	Grade 3	Grade 4	Any grade	Grades 3/4	Any grade		
Fatigue	13	8	1	-	23	1	9		
Diarrhea	15	4	<1	<1	19	<1	8		
Neutropenia	1	2	8	6	18	8	10		
Contusion	15	2	-	-	17	-	12		
AEs of interest, %									
Bruising	20	2	-	-	22	-	15		
Rash	9	2	<1	-	11	<1	5		
Arthralgia	8	3	<1	-	11	-	3		
Hemorrhage	5	2	1	-	8	<1	2		
Hypertension	1	4	2	-	7	<1	2		
Atrial fibrillation/flutter	-	1	<1	<1	2	-	<1		

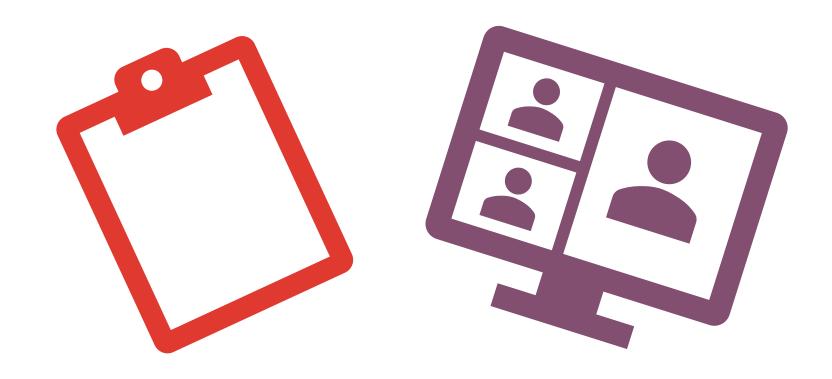
- No DLTs reported and MTD not reached
- 96% of patients received ≥1 dose of pirtobrutinib at or above the recommended phase II dose (200 mg once a day)
- 6 patients (1%) permanently discontinued treatment due to TRAEs

Take-home messages

- Targeted therapy is the undebatable standard of care in R/R CLL
- Targeted therapy is moving to the first line CLL
 - An approved standard of care in 17del/TP53^{mut} patients
 - An emerging standard of care for all untreated CLL patients
- Next generation BTK inhibitors may prove to be better to ibrutinib due to better efficacy and safety
- Regimens with BCL-2 inhibitors may allow for time-limited therapy
- Inhibition of BTK and BCL-2 are alternative solutions
 - Neither may be regarded as superior, however long-lasting therapy seems to be more efficient in high-risk patients
- Time-limited protocols may be based on MRD

Summary

Recent reports demonstrate the increasing importance of targeted agents at all stages of treatment for lymphomas and CLL


Maturing clinical data reported for anti-CD20×CD3 bispecific antibodies demonstrated the potential for this class in the treatment of aggressive and indolent lymphomas

CAR T-cell therapy is progressing rapidly with 3-year follow-up of KTE-X19 in patients with R/R MCL showing durable long-term responses with a manageable safety profile

Targeted therapy with BTKi or BCL2i is the basis for standard of care regimens in R/R CLL and is moving into the first-line setting, with a key clinical decision being whether to use continuous or time-limited therapy

We would appreciate your feedback! Please complete the post-meeting survey.

Thank you for your attention

