
Multidisciplinary management of Waldenström's macroglobulinemia: Providing specialist care beyond hematology

Tuesday, May 18, 2021 | 17:00-18:30 (CEST)

Welcome and introductions

Chair: Dr. Alessandra Tedeschi

Disclaimers

- The information contained herein is intended for healthcare professionals only and is given for educational purposes only. This document is not intended for professional counseling or advice.
- The views expressed in the presentations are those of the speakers and may not necessarily reflect the opinion of BeiGene. BeiGene does not guarantee the accuracy or reliability of the information provided herein and expressly disclaims liability for any errors or omissions in this information.
- Any case studies included in presentations refer to clinical cases and images from the clinical practice of the speaker. They have been interpreted and evaluated by the speaker based on his/her knowledge and experience.
- Prescribing information (PI) may vary depending on local approval in each country. Therefore, before prescribing any product, always refer to local materials such as the PI and/or the summary of product characteristics (SPC).
- Zanubrutinib is not approved for the treatment of Waldenström's macroglobulinemia outside Canada.

Housekeeping

Please note that personal recording of this meeting is not permitted

Exit full screen view at any time to submit a question for the panel to answer during the Q&A session

A post-meeting survey will be shared at the end of the webinar; we would greatly appreciate your feedback

Introducing the speakers

Véronique Leblond *Pitié-Salpêtrière Hospital & Sorbonne University, France*

Michael Lunn National Hospital for Neurology and Neurosurgery, UK

Roger Owen St James's Institute of Oncology, UK

Joe-Elie Salem *Pitié-Salpêtrière Hospital & Sorbonne University, France*

Alessandra Tedeschi Niguarda Cancer Center, Italy

Disclosures

• Consulting services: AbbVie, AstraZeneca, BeiGene, and Janssen-Cillag SpA

Agenda

17:00	Welcome and introductions	Alessandra Tedeschi	
17:05	Plenary presentation		
	Multidisciplinary management of WM: The hematologist's perspective	Roger Owen	
17:20	Focus on neuropathy		
	Diagnosis and management of peripheral neuropathies in WM and related IgM disorders	Michael Lunn	
17:40	Focus on cardiotoxicity	Véronique Leblond and Joe-Elie Salem	
	Cardiovascular toxicities associated with BTK inhibitors: A case study and review		
18:10	Discussion and audience Q&A	Moderator: Alessandra Tedeschi	
		Panel: All	
18:25	Summary	Alessandra Tedeschi	
18:30	Meeting close		

A guide to the meeting platform

Please exit full screen view to submit a question for the panel

Audience questions:

- Please enter your question in the submission box
- Because of the volume of questions expected today, some questions received might not be answered during the session

Multidisciplinary management of Waldenström's macroglobulinemia: The hematologist's perspective

Professor Roger Owen St James's Institute of Oncology, UK

Disclosures

- Honoraria: AstraZeneca, BeiGene, Celgene, Janssen
- Advisory board: BeiGene, Janssen

- Guidance on multidisciplinary teams
- Hemato-oncology multidisciplinary team should serve a population of ≥500,000 people
- Weekly meetings
- Discuss management of all new diagnoses, relapses, and key decision points
- Diagnosis produced by specialist integrated laboratory
- Record management decisions and minimum data set

Hematologic cancers The multi-disciplinary team

Support staff for hemato-oncologists

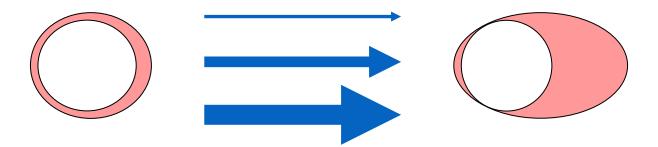
- Allied health professionals, including rehabilitation specialists
- Liaison psychiatrist and/or clinical psychologist
- Social worker
- Bereavement counselor
- Support for patients and carers

Core members

- Hemato-oncologists
- Hematopathologists
- Nurses*
- Palliative care specialist
- Clinical oncologist
- Radiologist

Extended team

- Clinical member of transplant team
- Microbiologist
- Pharmacist
- Vascular access specialist
- Registered dietician
- Orthopedic surgeon
- · Clinical oncologist


Other specialists

- Dermatologist
- Gastroenterologist
- Ear, nose, and throat surgeon
- Interventional radiologist
- Renal physician

^{*}At least one clinical nurse specialist, as well as ward sisters from hospitals that provide high-intensity chemotherapy.

NICE. Haematological cancers: improving outcomes. Available at: https://www.nice.org.uk/guidance/NG47/chapter/Recommendations#multidisciplinary-teams. Accessed: May 2021.

Plasma cell differentiation in WM

B-cell component

- Symptoms related to tumor bulk
- Anemia
- B symptoms
- Lymph nodes
- Spleen

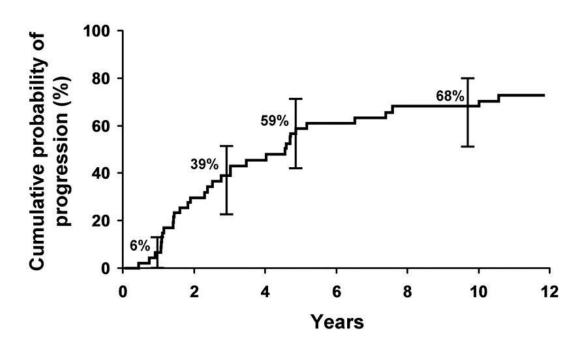
Plasma cell component

- Symptoms attributable to M protein
- Hyperviscosity syndrome
- Neuropathy
- Hemolytic anemia
- Cryoglobulinemia
- Immunodeficiency

WM, Waldenström's macroglobulinemia.

Areas to consider

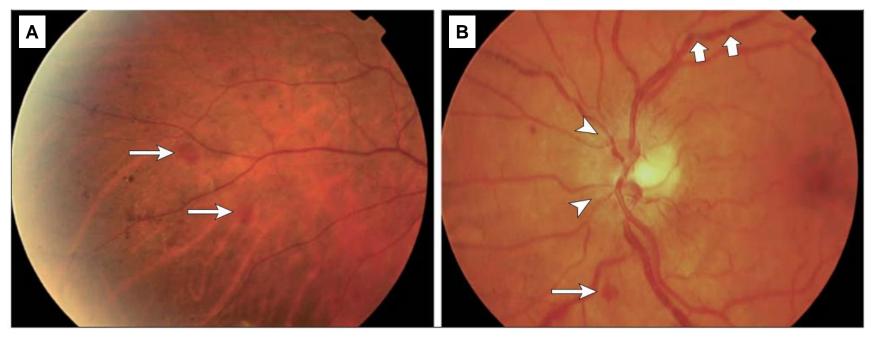
Newly diagnosed	Beyond diagnosis	
Symptomatic	Long-term complications	
Asymptomatic	Treatment complications	
IgM-related disorders	End-of-life care	


IgM, immunoglobulin M.

Disease monitoring What works best for patients?



Cumulative probability of progression in smoldering WM¹

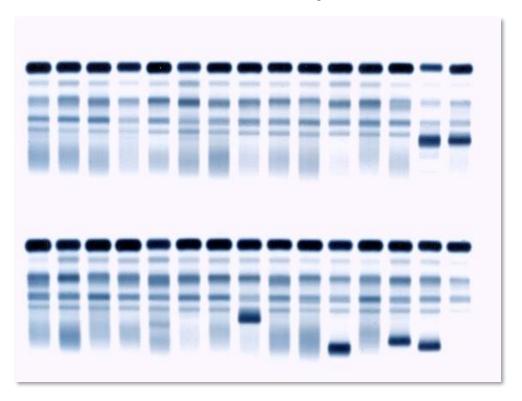


Patient preferences for disease monitoring²

Hyperviscosity-related retinopathy in WM

Fundus images of eyes of patients with WM

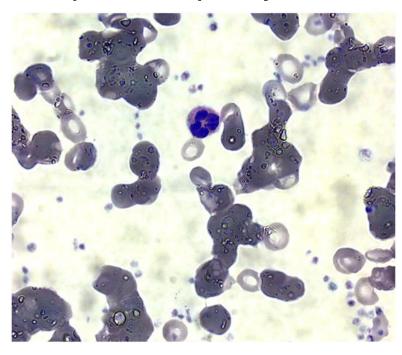
A) Peripheral retinal hemorrhages (arrows).

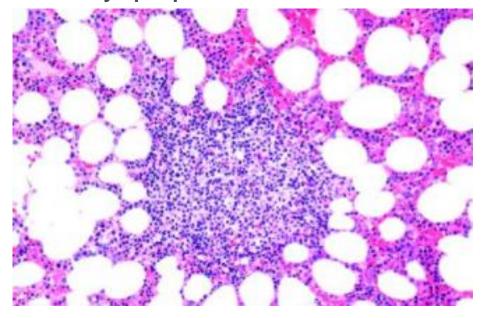

B) Central retinal hemorrhage (thin arrow); optic disc edema (arrowheads); and venous sausaging (thick arrows).

Access to apheresis services?

IgM-related disorders: Dangerous small clones

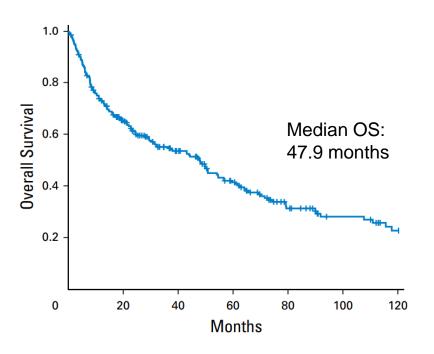
- Peripheral neuropathy
- Cold agglutinin disease
- Cryoglobulinemia
- Amyloidosis
- Schnitzler syndrome
- Acquired von Willebrand disease
- Monoclonal gammopathy of renal significance
- Diagnostic considerations

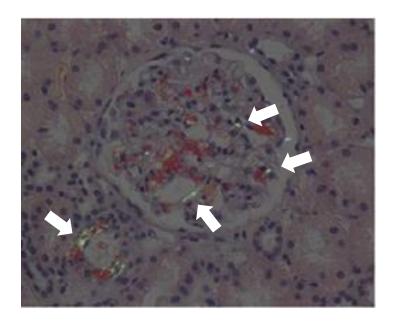

SDS-PAGE analysis


Cold agglutinin-associated lymphoproliferative disease

• Cold agglutinin—associated lymphoproliferative disease is a distinct entity from lymphoplasmacytic lymphoma

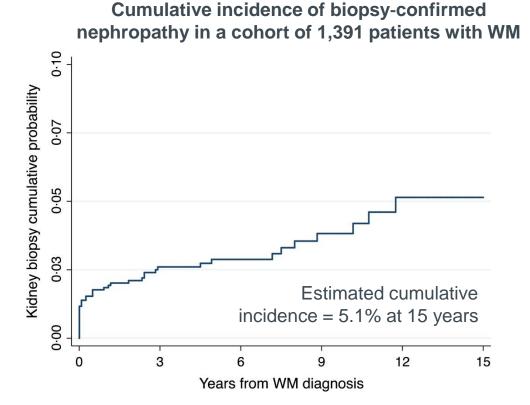
Peripheral blood smear from a patient with primary CAD¹

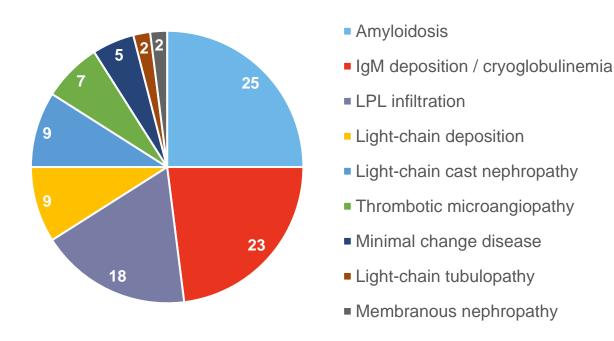

Bone marrow trephine biopsy in CAD-associated lymphoproliferative disease²


H&E-staining (200x)

Monoclonal IgM-related light-chain amyloidosis

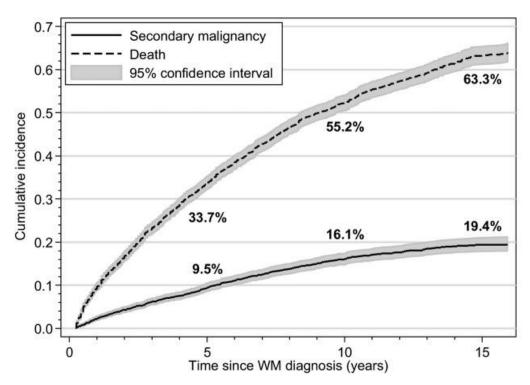
OS for patients with IgM-related light-chain amyloidosis in Europe (n=250)¹


Amyloid in renal tissue: Congo red staining²


Amyloid deposits = white arrows

Renal pathologies related to WM

Median OS in patients with WM and nephropathy was 11.5 years vs. 16 years in patients with WM without renal pathologies

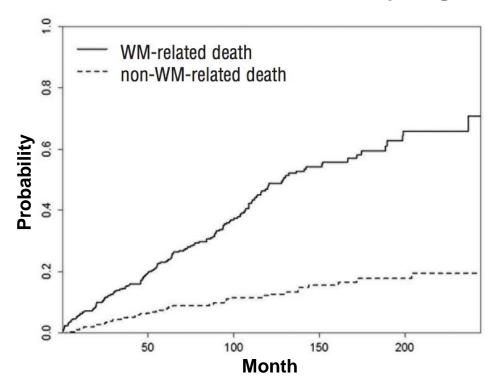

Distribution of WM-associated renal complications as demonstrated by kidney biopsy (N=44)

Beyond diagnosis: Secondary malignancies

4,676 patients from SEER database

Cumulative incidence of secondary malignancies and competing events among patients with WM

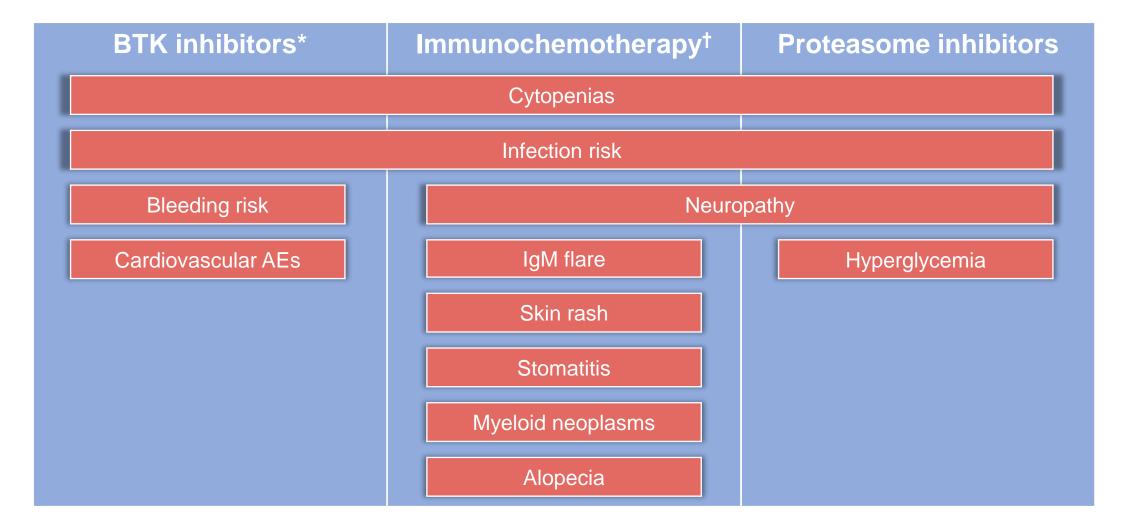
Types of secondary malignancies and cancer-specific MP-SIRs


Type of cancer	Cases, n	MP-SIR	95% CI
All cancers	681	1.49	1.38–1.61
Solid tumors	484	1.20	1.10–1.32
Lung	101	1.48	1.21-1.80
Prostate	95	1.03	0.84-1.26
Urinary tract	62	1.41	1.08–1.81
Colorectal	48	0.92	0.68-1.23
Breast	43	1.04	0.75–1.40
Other gastrointestinal	43	1.01	0.73-1.36
Melanoma	35	1.94	1.35–2.69
Other gynecologic	21	1.32	0.82-2.02
Head and neck	13	0.95	0.50-1.62
Thyroid	10	2.67	1.28-4.92
All hematologic	174	4.24	3.63-4.92
All lymphomas	120	4.38	3.63-5.24

MP–SIR, multiple primary–standardized incidence ratio; SEER, Surveillance, Epidemiology, and End Results; WM, Waldenström's macroglobulinemia. Castillo JJ *et al. Cancer* 2015; 121 (13): 2230–2236.

Beyond diagnosis: Non-WM mortality

• Unrelated mortality is significant, particularly in older patients


Survival curves (1-survival proportion) with WM-related and non-WM-related deaths as competing events

Survival curves with WM-related and non-WM-related deaths in patients >75 vs. ≤75 years

Beyond diagnosis: Treatment-related complications

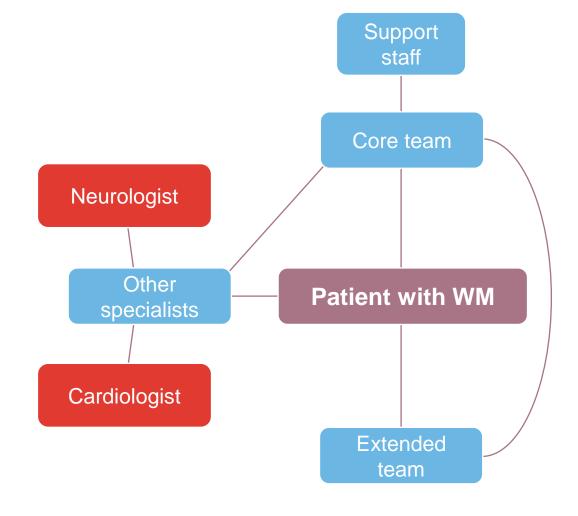
^{*}Side effects noted for each category in Castillo *et al.* 2020. †Includes risks associated with rituximab plus nucleoside analogs; cyclophosphamide, doxorubicin, vincristine, and prednisone; and bendamustine. AE, adverse event; IgM, immunoglobulin M.

Castillo JJ et al. Lancet Haematol 2020; 7 (11): e827-e837.

Beyond diagnosis: Other considerations

- Patient information/advocacy
- Immune deficiency
- Managing continuous therapies models of care
- Clinical networks trials, specialist opinion/review
- End-of-life care

Summary


Multidisciplinary management for a multifaceted disease

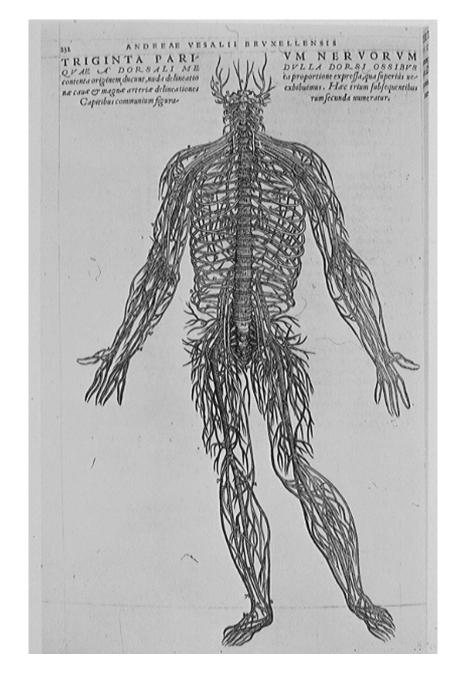
Management of WM requires a core team with access to a broad range of specialists

 Key specialities in WM include neurology and cardiology

Factors to consider:

- Clinical features (IgM vs. non-IgM)
- Disease stage/status
 - Symptomatic vs. asymptomatic
 - Initial presentation or later stages of disease
- Comorbidities
- Therapies received

Diagnosis and management of peripheral neuropathies in Waldenström's macroglobulinemia and related IgM disorders


Professor Michael Lunn National Hospital for Neurology and Neurosurgery, UK

Disclosures


- Consultant Neurologist and Joint Co-Ed Cochrane Neuromuscular
- Last 5 years:
 - Research funding
 - NHNN PI in PATH study
 - PI for trials with Novartis and UCB Pharma
 - PI on Investigator-led Optic, Perinoms and IMAGiNe studies
 - DSMB for Octapharma trial and Investigator led IoC trial

Honoraria

- Advisory role for CSL Behring, Grifols, Novartis, UCB Pharma, AstraZeneca
- Ad hoc travel support grants from CSL Behring

Anatomy of a normal nerve

Inflammatory peripheral neuropathy

Idiopathic

Acute

Acute inflammatory demyelinating polyradiculoneuropathy (AIDP)

Acute motor axonal neuropathy (AMAN)

Acute motor-sensory axonal neuropathy (AMSAN)

Fisher Syndrome and other regional variants

Pharyngeal-cervical-brachial

Paraparetic

Facial palsies

Pure oculomotor

Functional variants of GBS

Pure dysautonomia

Pure sensory GBS

Ataxic GBS

Subacute

Subacute inflammatory demyelinating polyradiculoneuropathy (SIDP)

Chronic

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP)

Multifocal motor neuropathy with conduction block (MMNCB)

Chronic relapsing axonal neuropathy

Chronic ataxic sensory neuronopathy

Paraproteinaemic neuropathy

Monoclonal gammopathy of undetermined significance (MGUS)

Multiple myeloma

Solitary plasmacytoma

Lymphoma or chronic lymphocytic leukaemia

Waldenström's macroglobulinaemia

Cryoglobulinaemia

Cold agglutinin disease

Primary amyloidosis

POEMS syndrome

Vasculitic Neuropathy

Primary vasculitis

Polyarteritis nodosa and Churg-Strauss disease

Wegener's vasculitis

Isolated nerve vasculitis

Temporal arteritis

Systemic autoimmune diseases with associated vasculitis

Rheumatoid arthritis

Systemic lupuserythematosus

Sjörgren's syndrome

Mixed connective tissue disease

Other

Serum sickness

Infectious, malignant, related to chemotherapy

Inflammatory neuropathy associated with infection

HIV neuropathies, including CMV neuropathy

Leprosy

Lyme disease

Chaga's disease

Paraneoplastic

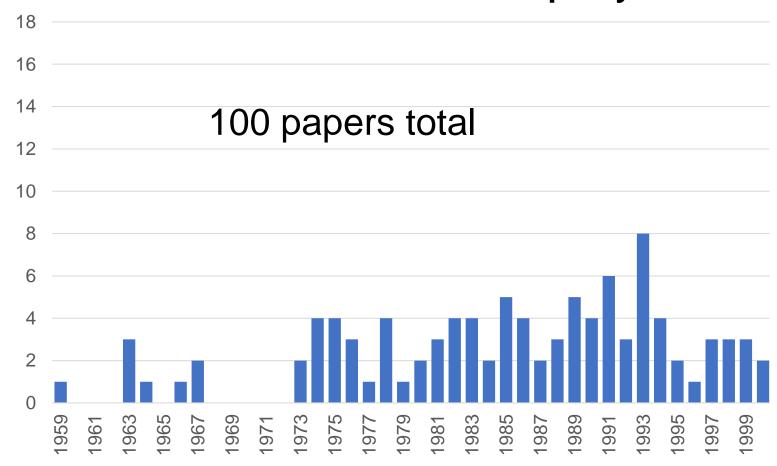
Sub-acute sensory neuropathy/neuronopathy - small cell lung

carcinoma and anti-Hu Abs

Other paraneoplastic tumour-antibody syndromes

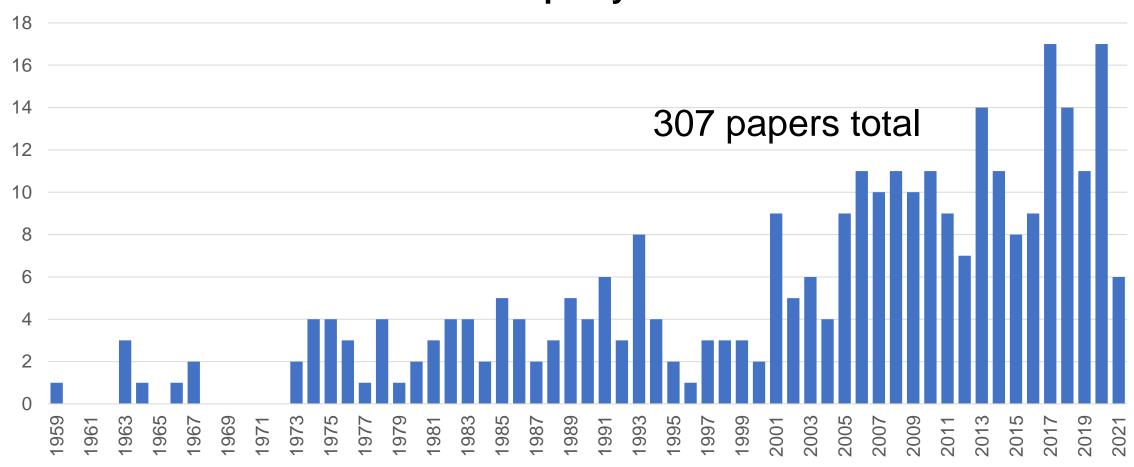
Metabolic

Diabetic lumbo-sacral plexopathy


Lunn MP: Unpublished.

Neuropathies associated with paraproteins

- Monoclonal gammopathy of undetermined significance
 - IgM +/- anti-MAG paraproteinemia
 - IgG and IgA
 - Others?
- Waldenström's macroglobulinemia
- Lymphoma neurolymphomatosis
- POEMS syndrome
 - Solitary myeloma (osseous/extraosseous lytic/sclerotic)
- Amyloidosis
- Cryoglobulinemia
- Multiple myeloma


MGUS, MGNS, WM, or something else?

WM and neuropathy: 1959-2020*

MGUS, MGNS, WM, or something else?

WM and neuropathy: 1959–2020*

MGUS, MGNS, WM, or something else?

PostScript

L265P mutation in IgM anti-MAG paraprotein-associated peripheral neuropathy

High prevalence of the MYD88 J Neurol Neurosurg Psychiatry September 2018 Vol 89 No 9

Josephine Mathilde Vos, ¹
Nicolette C Notermans, ² Shirley D'Sa, ³
Michael P Lunn, ³ W Ludo van der Pol, ²
Willem Kraan, ^{4,5} Mary M Reilly, ⁶ Jane Chalker, ⁷
Rajeev Gupta, ³ Marie-José Kersten, ^{5,8}
Steven T Pals, ^{4,5} Monique C Minnema ⁹

bih short report

IgM paraprotein-associated peripheral neuropathy: small CD20-positive B-cell clones may predict a monoclonal gammopathy of neurological significance and rituximab responsiveness

Lucia Y. Chen,¹ D Stephen Keddie,^{2,3} Michael P. Lunn,^{2,3} Joshua Bomsztyk,¹ Evan Vitsaras,⁴

Summary

IgM paraprotein-associated peripheral neuropathy (PN) in patients without overt

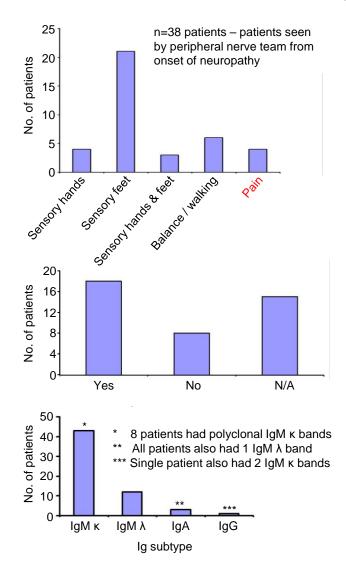
History and examination: The basis of all diagnosis

- The history is the key
 - All features of the disease
 - Onset, tempo, fluctuation, recurrence, recovery
 - Motor and sensory impairments
 - Disability
 - Autonomic, respiratory, cranial nerve involvement
 - Previous medical history, medication, diet, alcohol
 - Family history
 - Unusual, systemic, unexpected, irrelevant information
 - Don't be afraid to come back to the history later

Anti-MAG paraproteinemic demyelinating peripheral neuropathy (DADS)

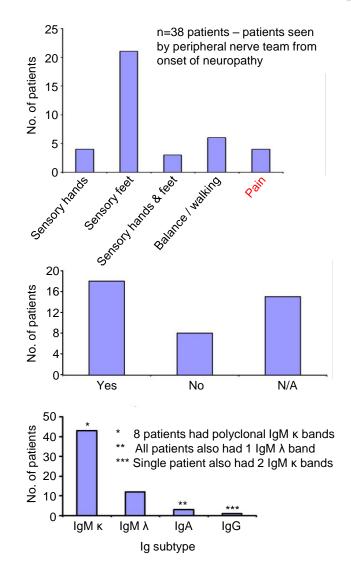
- Chronic progressive sensorimotor demyelinating neuropathy
 - Elderly, male, ataxia, and tremor
 - Little motor involvement
 - Sensory loss is key
 - VS often absent to costal margin
 - JPS almost normal
 - PP in short socks
- Serum IgMk paraprotein
- Paraprotein has 'anti-MAG' activity
 - Sees HNK-1 epitope (also on P0, PMP22, SGPG, SGLPG)
 - Not clear which target is pathogenic in vivo ?MAG
- Characteristic neurophysiology and pathology

Anti-MAG tremor

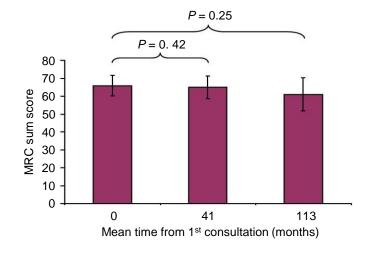


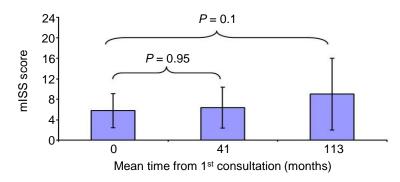
MAG, myelin-associated glycoprotein.

Anti-MAG paraproteinemic demyelinating peripheral neuropathy (DADS)


- Chronic progressive sensorimotor demyelinating neuropathy
 - Elderly, male, ataxia, and tremor
 - Little motor involvement
 - Sensory loss is key
 - VS often absent to costal margin
 - JPS almost normal
 - PP in short socks
- Serum IgMk paraprotein
- Paraprotein has 'anti-MAG' activity
 - Sees HNK-1 epitope (also on P0, PMP22, SGPG, SGLPG)
 - Not clear which target is pathogenic in vivo ?MAG
- Characteristic neurophysiology and pathology

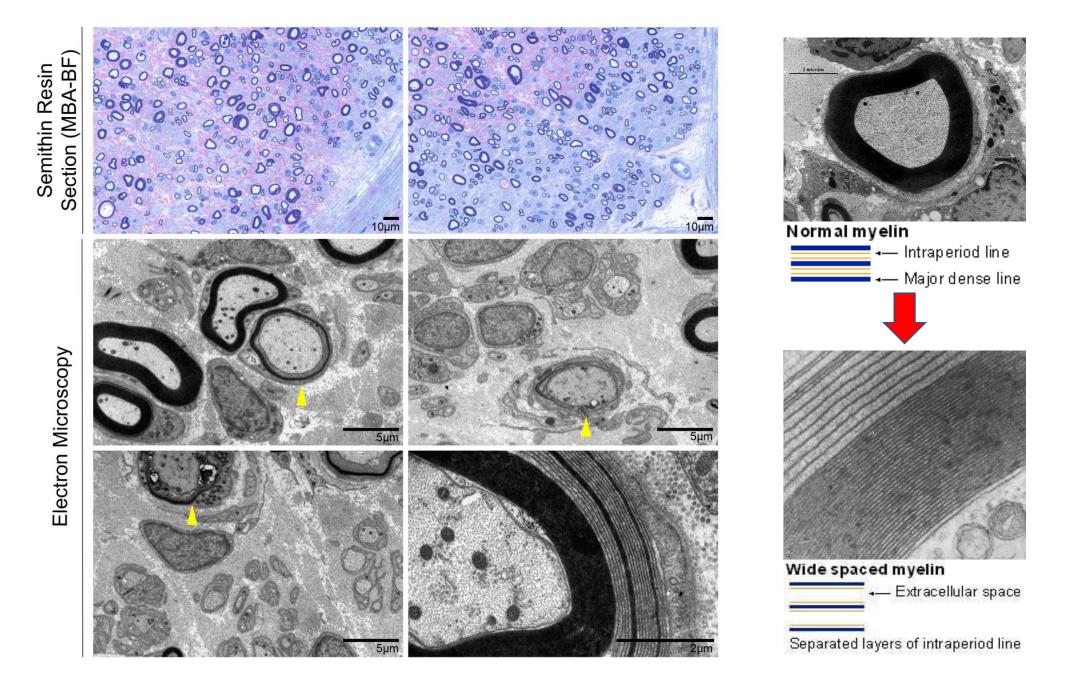
The NHNN anti-MAG cohort

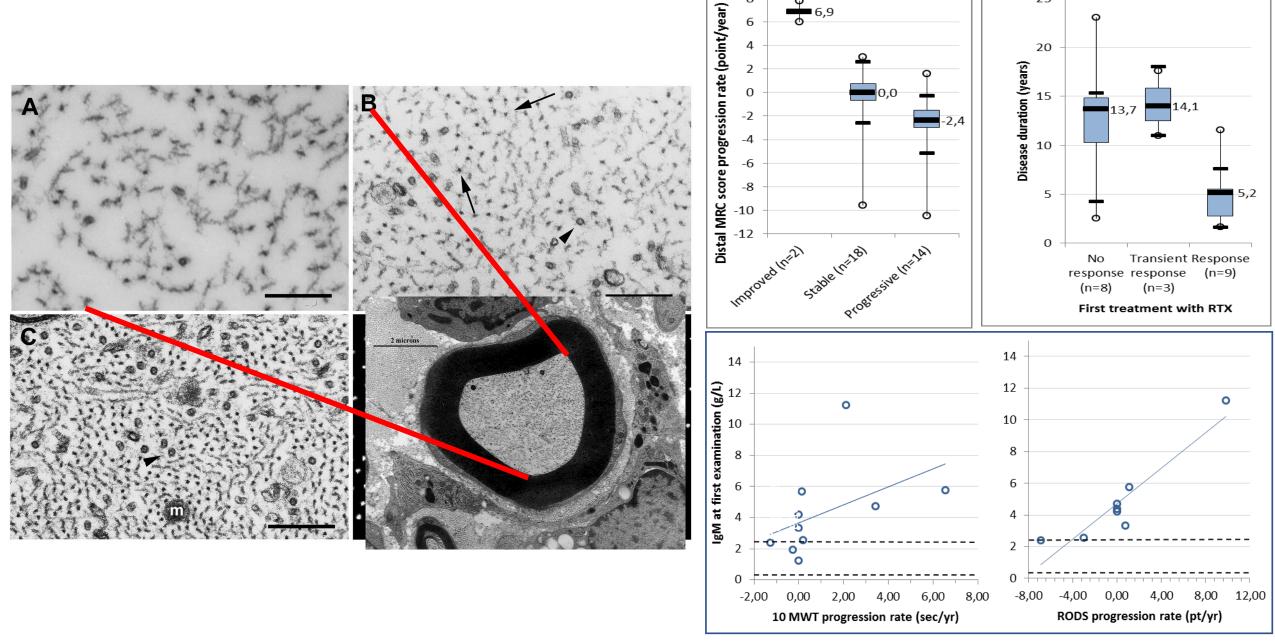



- >100 patients with anti-MAG antibodies
- NHNN diagnosis
- 'Years' of follow-up
- Inclusion
 - Typical clinical picture
 - >70,000 Bühlmann Units and/or
 - Typical neurophysiology
 - WSM on nerve biopsy
- 42 patients fulfilling inclusion criteria

The NHNN anti-MAG cohort

- >100 patients with anti-MAG antibodies
- NHNN diagnosis
- 'Years' of follow-up
- Inclusion
 - Typical clinical picture
 - >70,000 Bühlmann Units and/or
 - Typical neurophysiology
 - WSM on nerve biopsy
- 42 patients fulfilling inclusion criteria





Anti-MAG paraproteinemic demyelinating peripheral neuropathy (DADS)

- Chronic progressive sensorimotor demyelinating neuropathy
 - Elderly, male, ataxia, and tremor
 - Little motor involvement
 - Sensory loss is key
 - VS often absent to costal margin
 - JPS almost normal
 - PP in short socks
- Serum IgMk paraprotein
- Paraprotein has 'anti-MAG' activity
 - Sees HNK-1 epitope (also on P0, PMP22, SGPG, SGLPG)
 - Not clear which target is pathogenic in vivo ?MAG
- Characteristic neurophysiology and pathology

10 MWT, 10-meter walk test; IgM, immunoglobulin M; MRC, Medical Research Council; RODS, Rasch-built Overall Disability Scale; RTX, rituximab. Pihan and Lunn 2014: Unpublished.

- Is treatment required at all?
 - Elderly, male, mild ataxia, tremor, and unsteadiness no falls
 - No weakness, distal PP loss, and VS to costal margin
 - IgMκ paraprotein and demyelinating neuropathy
 - Anti-MAG antibody positive >70,000 Bühlmann Units

Watch and wait...

You may do more good with a stick and some trainers...

- Is treatment required at all?
 - o Indications:
 - Hematologic
 - Progressive motor or sensory loss with instability
 - Progressive and disabling tremor
 - Younger age
 - Shorter disease duration

- "IVIg confers short-term benefit" RCT
 - Multiple other immunosuppressants used
 - Melphalan, chlorambucil, cyclo +/- steroid, fludarabine
- Rituximab (anti-CD20) promising in some studies
 - 8 non-randomized studies 6 (79 pts) positive (1 (3 pts) negative)
 - 375 mg/m² usual dose recent high-dose study added improvement
 - Several cases of worsening

Immunotherapy for IgM anti-myelin-associated glycoprotein paraprotein-associated peripheral neuropathies

Michael PT Lunn¹, Eduardo Nobile-Orazio²

Department of Neurology and MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, THE COCHRANE UK. ²IRCCS Humanitas Clinical Institute, Neurology 2, Milan University, Milan, Italy
COLLABORATION

Placebo-Controlled Trial of Rituximab in IgM Anti–Myelin-Associated Glycoprotein Antibody Demyelinating Neuropathy

Ann Neurol 2009;65:286–293

Marinos C. Dalakas, MD, Goran Rakocevic, MD, Mohammad Salajegheh, MD, James M. Dambrosia, PhD, Angelika F. Hahn, MD, Raghavan Raju, PhD, and Beverly McElroy, CNRN

Placebo-controlled trial of rituximab in IgM anti-myelin—associated glycoprotein neuropathy

Jean-Marc Léger, MD Karine Viala, MD

▲ Neurology® 2013;80:2217-2225

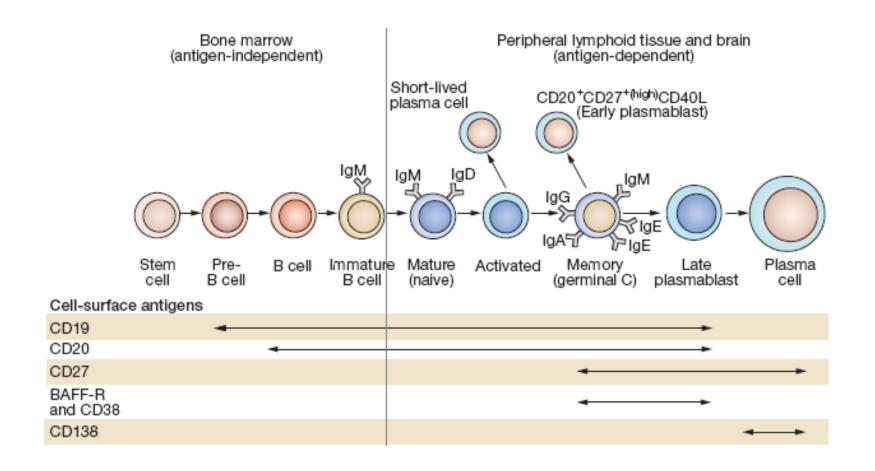
Karine Viala, MD For the RIMAG Study Group (France and Switzerland)

Figure 1: Numbers of patients improved on INCAT score at 8–12 months

	Experimenta		rimental Control		Risk Ratio			Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI	
Dalakas 2009	4	13	0	13	12.8%	9.00 [0.53, 151.94]		 -	-
Leger 2013	8	20	4	27	87.2%	2.70 [0.94, 7.73]			
Total (95% CI)		33		40	100.0%	3.51 [1.30, 9.45]		-	
Total events	12		4						
Heterogeneity: Chi ² =	0.66, df = 1	(P = 0.	$(41); I^2 = ($	0%			0.01	01 1 10	100
Test for overall effect:	= 0.01)				0.01	Favours placebo Favours rituximab	100	

Figure 2: Improvement in INCAT score (whole and leg disability score) at 8–12 months

	Expe	erimen	tal	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Dalakas 2009	-0.38	0.67	13	0.09	0.7	13	58.7%	-0.47 [-1.00, 0.06]	
Leger 2013	-0.2	1.28	20	0.22	0.75	27	41.3%	-0.42 [-1.05, 0.21]	
Total (95% CI)			33			40	100.0%	-0.45 [-0.85, -0.05]	-
Heterogeneity: Chi ² = 0.01, df= 1 (P = 0.90); I^2 = 0% Test for overall effect: Z = 2.18 (P = 0.03)							-1 -0.5 0 0.5 1 Favours rituximab Favours placebo		


Figure 3: Numbers of patients improved or stabilized on PGIC 8–12 months

	Rituximab		tuximab Placebo		Risk Ratio			Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixe	ed, 95% CI	
Dalakas 2009	12	13	7	13	44.8%	1.71 [1.01, 2.90]				
Leger 2013	15	19	10	25	55.2%	1.97 [1.16, 3.36]				
Total (95% CI)		32		38	100.0%	1.86 [1.27, 2.71]			-	
Total events	27		17							
Heterogeneity: Chi²=	0.14, df =	1 (P=	0.71); l² :	= 0%			+-	0.5	 	<u> </u>
Test for overall effect: Z = 3.20 (P = 0.001)							0.2	0.0	Favours rituximab	5

Figure 4: Improvement in 10-meter walk (s) at 8–12 months

	Ritu	ıxima	ıb	Pla	acebo			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Dalakas 2009	-0.9	3.2	13	-0.2	4.15	13	29.2%	-0.70 [-3.55, 2.15]	
Leger 2013	-0.3	3.2	18	-0.1	2.7	24	70.8%	-0.20 [-2.03, 1.63]	
Total (95% CI)			31			37	100.0%	-0.35 [-1.89, 1.19]	
Heterogeneity: Chi² = Test for overall effect				7); I² = 0°	%				-4 -2 0 2 4 Favours rituximab Favours placebo

Rituximab: Efficiencies and deficiencies

Other options?

- No studies
- Anti-MAG neuropathy seldom serious enough for some?
- Dexamethasone, rituximab, and cyclophosphamide
- Rituximab + bendamustine? Rituximab + fludarabine?
- Combination rituximab and BTK inhibitor?
- New-generation BTK inhibitors (no trials)
- Proteasome inhibitors
- Bortezomib issues
- Carfilzomib
- Collaborative clinical trials needed with neurology, hematology, and pharma

MAG, myelin-associated glycoprotein; R, rituximab.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Ibrutinib in Previously Treated Waldenström's Macroglobulinemia

Steven P. Treon, M.D., Ph.D, Christina K. Tripsas, M.A., Kirsten Meid, M.P.H.,

Ibrutinib for patients with rituximab-refractory Waldenström's macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial

Meletios A Dimopoulos, Judith Trotman, Alessandra Tedeschi, Jeffrey V Matous, David Macdonald, Constantine Tam, Olivier Tournilhac, Shuo Ma, Albert Oriol, Leonard T Heffner, Chaim Shustik, Ramón García-Sanz, Robert F Cornell, Carlos Fernández de Larrea, Jorge J Castillo, Miquel Granell, Marie-Christine Kyrtsonis, Veronique Leblond, Argiris Symeonidis, Efstathios Kastritis, Priyanka Singh, Jianling Li, Thorsten Graef, Elizabeth Bilotti, Steven Treon, Christian Buske, on behalf of the iNNOVATE Study Group and the European Consortium for Waldenström's Macroqlobulinemia*

ARTICLE OPEN ACCESS CLASS OF EVIDENCE

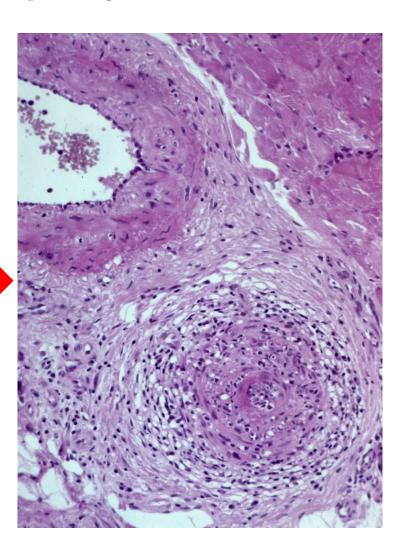
The Bruton tyrosine kinase inhibitor ibrutinib improves anti-MAG antibody polyneuropathy

Francesca Castellani, MD,* Andrea Visentin, MD, PhD,* Marta Campagnolo, MD, Alessandro Salvalaggio, MD, Mario Cacciavillani, MD, PhD, Cinzia Candiotto, PhD, Roberta Bertorelle, MD, Livio Trentin, MD, and Chiara Briani, MD

Correspondence Dr. Briani chiara.briani@unipd.it

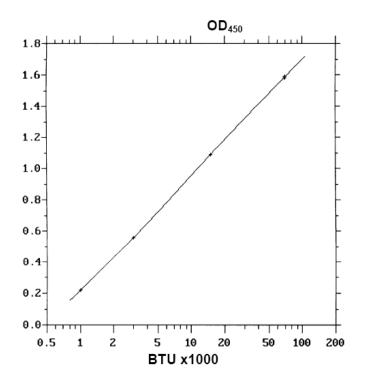
Neurol Neuroimmunol Neuroinflamm 2020;7:e720. doi:10.1212/NXI.000000000000720

- 9/63 patients with neuropathy treated for neuropathy
- ≥1 previous treatment
- 5 improved
- 4 stabilized
- No objective neuro measures
- Rituximab—refractory
- 4/31 patients with neuropathy
- 2 improved one total
- 2 stabilized
- No objective neuro measures
- 3 patients
- 2 rituximab—refractory
- All improved subjectively and objectively with measured changes


- Are you treating the right thing?
 - 62-year-old female
 - Long history of severe osteoarthritis and immobility
 - Smoker
 - Numb, painful red feet, and 'venous ulcers'
 - Pronounced distal motor loss; PP=VS/JPS loss
 - Demyelinating neurophysiology
 - 4 × IgMκ paraproteins and 'positive' anti-MAG antibodies

- Are you treating
 - 62-year-old
 - Long history
 - Smoker
 - Numb, pain
 - Pronounced
 - Demyelinati
 - 。 4 x IgMk pa

- Are you treating
 - 62-year-old
 - Long history
 - Smoker
 - Numb, pain
 - Pronounced
 - Demyelinati
 - 4 x lgMk pa



- Are you treating the right thing?
 - 62-year-old female
 - Long history of severe osteoarthritis and immobility
 - Smoker
 - Numb, painful red feet, and 'venous ulcers'
 - Pronounced distal motor loss; PP=VS/JPS loss
 - Demyelinating neurophysiology
 - 4 × IgMκ paraproteins and 'positive' anti-MAG antibodies
- Vasculitis and acquired erythermalgia with vasculitic neuropathy
- CD138 <5% plasma cells but IgMk restricted 'appearances are suggestive of myeloma than lymphoplasmacytic lymphoma... IgM very rare'*

The Bühlmann anti-MAG ELISA

- Used by almost every neuroimmunology laboratory
- Ubiquitous and easy to use
- Unclear what the antigen is and highly sensitive

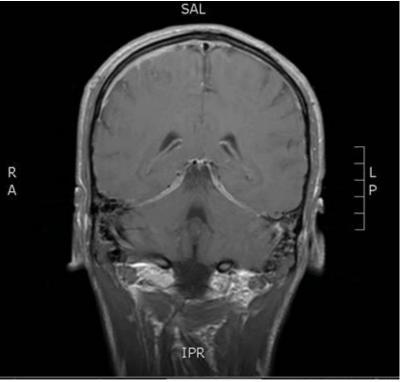
Report	Titer
Negative	<1,000 Bühlmann Units
Weak positive	1,000-7,000 Bühlmann Units
Positive	7,000-70,000 Bühlmann Units
Strong positive	>70,000 Bühlmann Units

Caution in interpretation of results: positive is not necessarily 'positive'

WM and direct invasion (1)

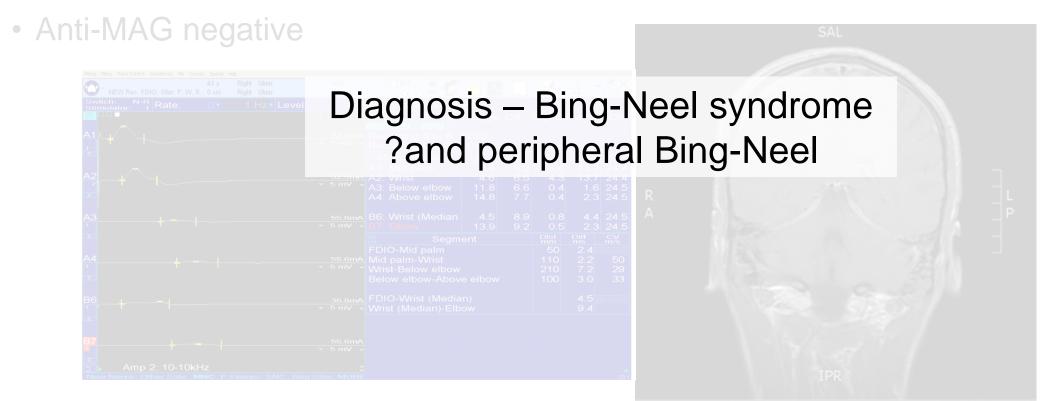
- 43-year-old male 18.12.2013
- Sept 2013 progressive numbness and tingling forefeet and fingers to knees/elbow
- Shooting pain and cramping in legs
- Loss of distal power and dexterity
- Occasional falls
- No autonomic or cranial nerve involvement
 - Mild tinnitus
- 3-stone weight loss

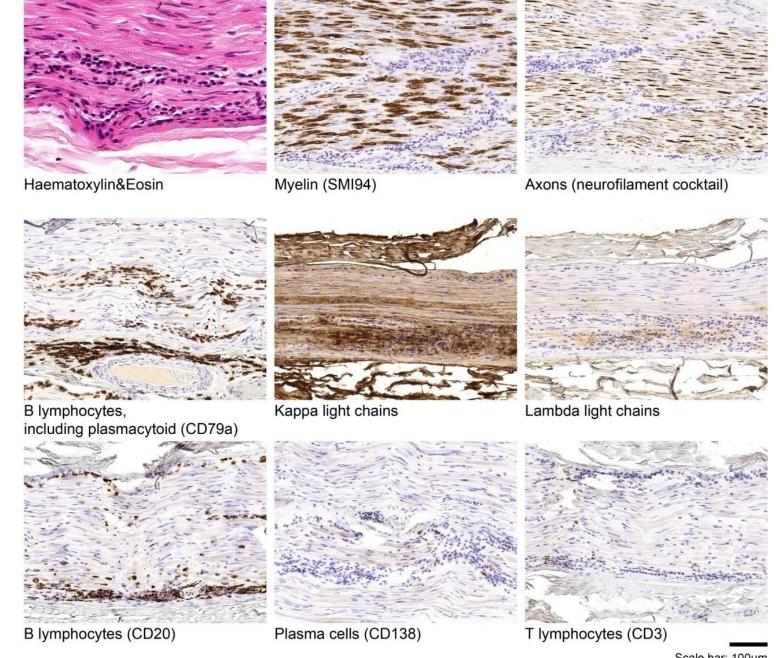
WM, Waldenström's macroglobulinemia.


WM and direct invasion (2)

- Past medical history
 - Waldenstrom's macroglobulinemia Dec 2011 30 g/L lgMk paraprotein
- Treatment with six cycles of R-CVP with vincristine dose limitation
- Good response (30 g/L to 10 g/L)
- Mild vincristine neuropathy reducing
- Being hematologically monitored

A case of...

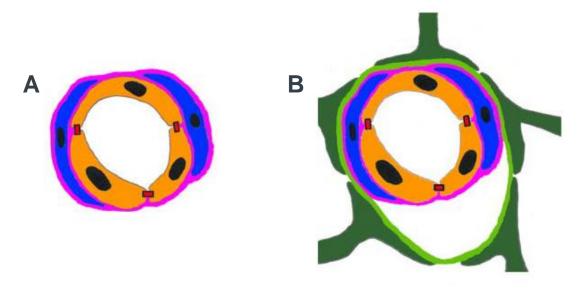

- CSF protein 3.45 g/L; CSF 12 WCC/cumm lymphs too few for flow
- IgMk paraprotein 24 g/L
- Anti-MAG negative



Bing-Neel syndrome

- CSF protein 3.45 g/L; CSF 12 WCC/cumm lymphs too few for flow
- IgMk paraprotein 24 g/L

Neuropathology: Bing-Neel Syndrome of the periphery?



Lunn: Unpublished. Scale bar: 100µm

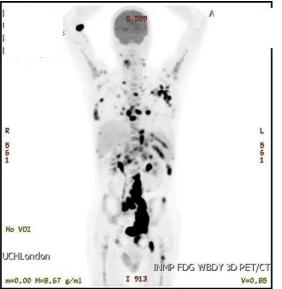
The blood-nerve barrier^{1,2}

- Intraneural homeostasis
- The perineurium is important but the BNB critical
- Non-fenestrated, pinocytic vesicle-poor, active exchange interface
- Macromolecular permeability of the BNB is probably equivalent to the BBB

Basic features of the A) BNB and B) BBB²

Endothelial cells (orange) of the BNB (A) and BBB (B) are connected by tight junctions (red rectangles) and embedded in a single basement membrane (pink) with surrounding pericytes (blue). In the BBB, the second basement membrane (light green) wraps the whole endothelial cell / first basement membrane / pericyte complex, and the astrocytic endfoot layer (dark green) surrounds the outer surface.

The need to get behind the blood-nerve barrier


Primary sciatic nerve lymphoma: a case report and review of the literature

M J L Descamps, L Barrett, M Groves, L Yung, R Birch, N M F Murray, D C Linch, M P T Lunn, M M Reilly

J Neurol Neurosurg Psychiatry 2006;77:1087-1089. doi: 10.1136/jnnp.2006.087577

Chemotherapy: Individualized 'borrowed' treatment

P. Moreton · G. J. Morgan · D. Gilson · G. M. Smith

B. A. McVerry · J. M. Davies · M. J. Mackie

S. Bolam · S. S. Jalihal · M. R. Howard · L. A. Parapia

A. T. Williams · J. A. Child

Cancer Chemother Pharmacol (2004) 53: 324-328 DOI 10.1007/s00280-003-0737-2

The development of targeted chemotherapy for CNS lymphoma—a pilot study of the IDARAM regimen

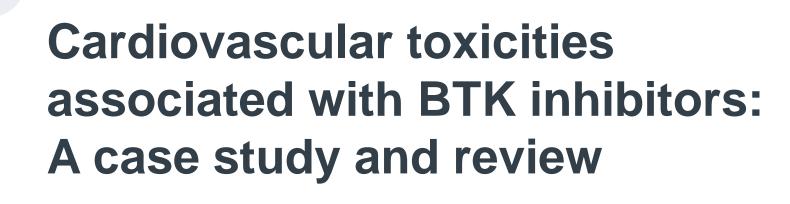
Combined treatment of rituximab, idarubicin, dexamethasone, cytarabine, methotrexate with radiotherapy for primary central nervous system lymphoma

J. Cell. Mol. Med. Vol 18, No 6, 2014 pp. 1081-1086

Defeng Zhao a, Liren Qian a, *, Jianliang Shen a, Xiaopeng Liu a, Ke Mei b, Jian Cen a, Yaming Wang ^c. Congyong Li ^d. Yuanyuan Ma ^a

NATRix-RICE therapy and autologous haematopoietic stem-cell transplantation in diffuse large B-cell lymphoma with secondary CNS involvement (MARIETTA): an international, single-arm, phase 2 trial

Andrés J M Ferreri, Jeanette K Doorduijn, Alessandro Re, Maria Giuseppina Cabras, Jeffery Smith, Fiorella llariucci, Mario Luppi, Teresa Calimeri, Chiara Cattaneo, Jahanzaib Khwaja, Barbara Botto, Claudia Cellini, Luca Nassi, Kim Linton, Pam McKay, Jacopo Olivieri, Caterina Patti, Francesca Re, Alessandro Fanni, Vikram Singh, Jacoline E C Bromberg, Kelly Cazens, Elisabetta Gastaldi, Massimo Bernardi, Nicola Cascavilla Andrew Davies, Christopher PFox, Maurizio Frezzato, Wendy Osborne, Anna Marina Liberati, Urban Novak, Renato Zambello, Emanuele Zucca, Kate Cwynarski, for the International Extranodal Lymphoma Study Group (IELSG)


Lancet Haematol 2021: Background Secondary CNS lymphoma is a rare but potentially lethal event in patients with diffuse large B-cell 8: e110-21 lymphoma. We aimed to assess the activity and safety of an intensive, CNS-directed chemoimmunotherapy consolidated

What do we need?

- Cohorts of patients
 - Collaborations
 - Neurology, Hematology, and Neurology and Hematology
 - Interinstitutional
- Accurate diagnosis
 - o Clinical, electrophysiological, serum, and tissue
- Coherent and logical drug combinations
- Randomized trials of classic or novel design

IgM-related neuropathies: Summary

- Many and very different
 - Anti-MAG
 - Vasculitis
 - Direct invasion
 - Light-chain amyloidosis / light-chain deposition disease
- Differentiated by careful history-taking and examination
- Indolent and difficult to treat
- Treatment not always required
- New randomized controlled trials

Professor Véronique Leblond Pitié-Salpêtrière Hospital & Sorbonne University, France Dr. Joe-Elie Salem Pitié-Salpêtrière Hospital & Sorbonne University, France

(Adjunct Associate Professor VUMC, USA)

Disclosures

Professor Leblond

- Speaker bureau: Roche, Gilead, Janssen, AbbVie, BeiGene, GSK
- Board: Roche, Pharmacyclics, Janssen-Cilag, GSK, Gilead, AstraZeneca, AbbVie
- Honoraria: Roche, Pharmacyclics, Janssen-Cilag, GSK, Gilead, Lilly, Amgen, AstraZeneca, BeiGene

Dr. Salem

• Speaker bureau: BeiGene, AstraZeneca, BMS

• Board: BMS

• Honoraria: BMS

Initial case presentation: Mrs F

Patient

76-year-old female

Cardiovascular risk factors

- Active smoker, prediabetes
- Treatments: Aspirin 75 mg/day

Medical history

- WM diagnosed in 2016
 - MYD88^{MUT}/CXCR4^{WT}
- In remission for 3 years after 6 cycles of rituximab and bendamustine

In 2020

- Fatigue, shortness-of-breath
- Normal physical examination

Laboratory studies

•	Hemoglobin	8.9	g/dL

•	Platelets	120 ×	10 ⁹ /I
	i iatoloto	120 **	10/

• WBC
$$3.7 \times 10^9/L$$

24h urinary protein

Normal

Initial case presentation: Mrs F

Patient

76-year-old female

In 2020

- Fatigue, shortness-of-breath
- Normal physical examination

Cardiovascular risk factors

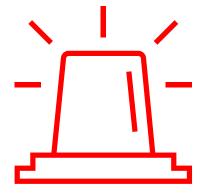
- Active sn
- Treatme

Treatment by ibrutinib: 420 mg/day started in March 2020

Medical history

- WM diagnosed in 2016
 - MYD88^{MUT}/CXCR4^{WT}
- In remission for 3 years after 6 cycles of rituximab and bendamustine

\neg			
	0+	\sim $+$	


- WBC
- PMN
- Serum creatinine
- M spike
- IgM
- 24h urinary protein

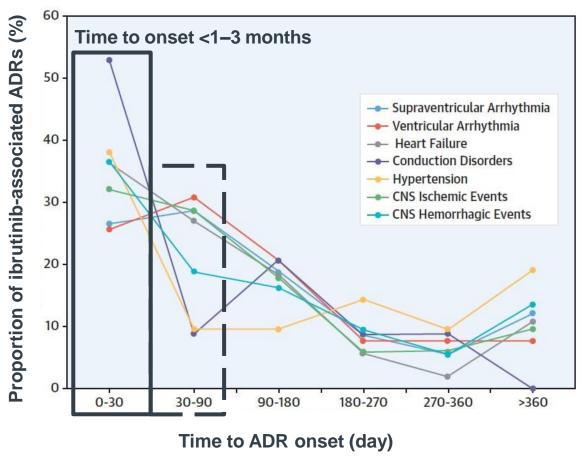
$120 \times 10^{9}/L$

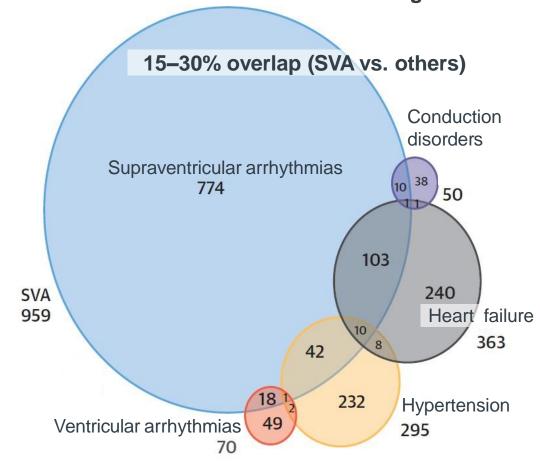
- $3.7 \times 10^{9}/L$
- 62%
- 1.3 mg/dL
- 2.3 g/dL
- 3,700 mg/dL
- Normal

What are the main cardiovascular toxicities we should think about in the follow-up of patients on ibrutinib?

Cardiovascular toxicities associated with ibrutinib (1)

- Ibrutinib
 cardiovascular
 adverse drug
 reactions identified
 using the international
 pharmacovigilance
 database VigiBase
 - 16,343,451 safety case reports




Until January 2018	Ibrutinib, n (%)	IC ₀₂₅
Cardiac supraventricular arrhythmias	959 (7.07%)	3.97
CNS hemorrhagic events	505 (3.72%)	1.63
Heart failure	363 (2.67%)	1.46
Cardiac ventricular arrhythmias	70 (0.52%)	0.96
Cardiac conduction disorders	50 (0.37%)	0.76
CNS ischemic events	254 (1.87%)	0.73
Hypertension	295 (2.17%)	0.40
Cardiac valve disorders	30 (0.22%)	-0.07
Myocardial infarction	149 (1.10%)	-0.11
Cardiac death or shock	131 (0.97%)	-0.13
Venous thromboembolic events	108 (0.80%)	-0.34
Vascular neoplasms	2 (0.01%)	-2.72
Pulmonary hypertension	19 (0.14%)	-1.14
Hyperglycemia, diabetes	112 (0.83%)	-1.07
Torsade de pointes / QT prolongation	9 (0.07%)	-2.01
Myocarditis	2 (0.01%)	-3.61
Dyslipidemia	14 (0.10%)	-2.75

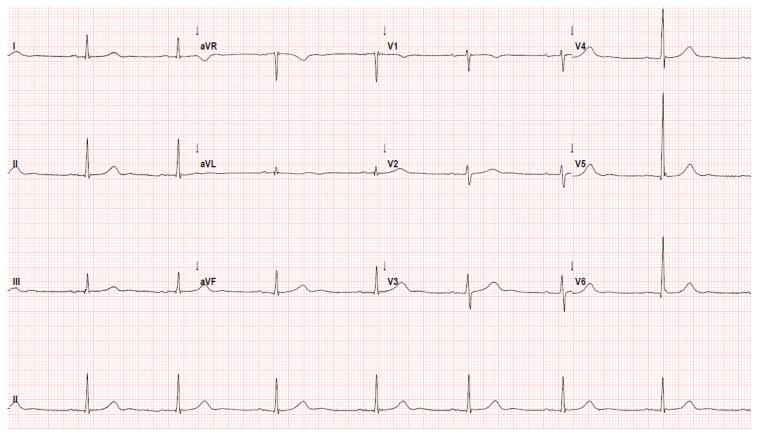
Cardiovascular toxicities associated with ibrutinib (2)

Time to adverse drug reaction onset associated with ibrutinib

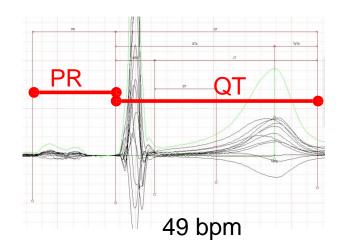
Overlap of cardiovascular adverse drug reactions associated with ibrutinib in VigiBase*

^{*}Overlap between supraventricular arrhythmias, ventricular arrhythmias (VAs), conduction disorders (CDs), heart failure (HF) and hypertension; overlap between VA and CD (n=1) or VA and HF (n=7) are not displayed. ADR, adverse drug reaction; CNS, central nervous system; SVA, supraventricular arrhythmia. Salem JE et al. J Am Coll Cardiol 2019; 74 (13): 1667–1678.

Mrs F: Baseline echocardiography

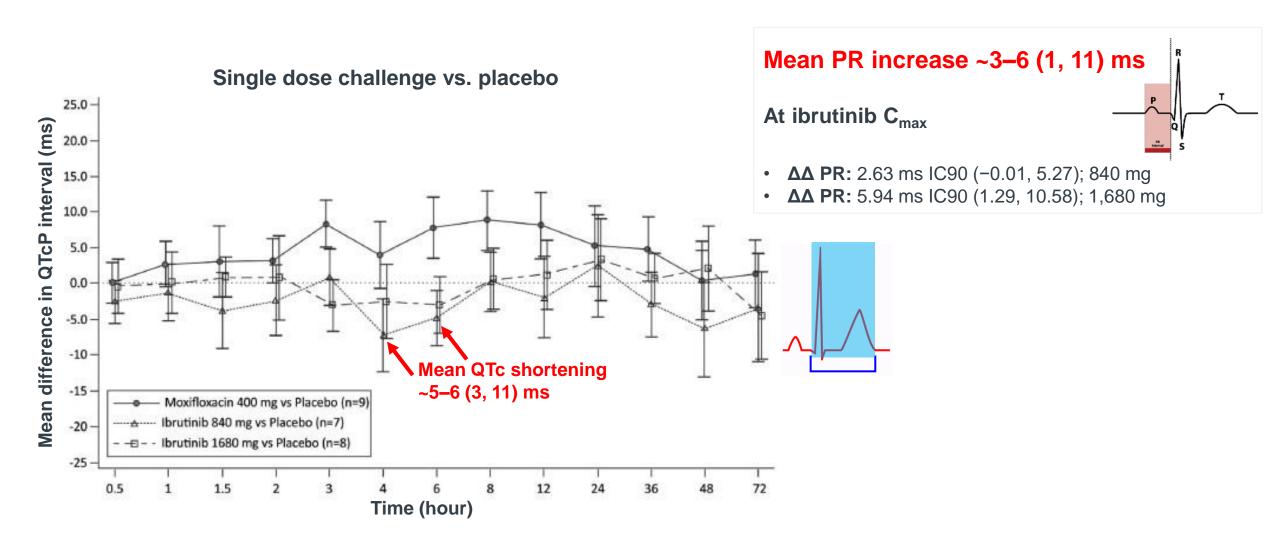

- Normal left ventricular ejection fraction, diameter, and volumes; no hypertrophy
- No valve abnormalities

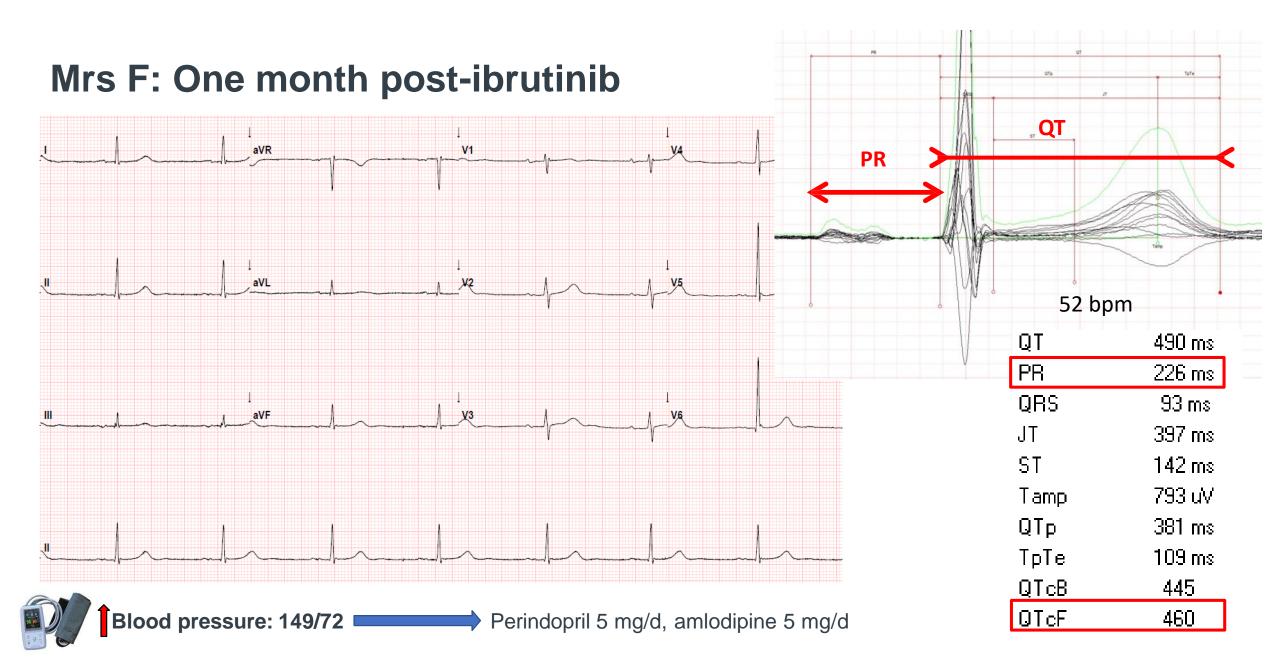
- Normal right ventricle and no pulmonary hypertension
- Left atrial dilatation, left atrial volume index (LAVI): 44 mL/m²

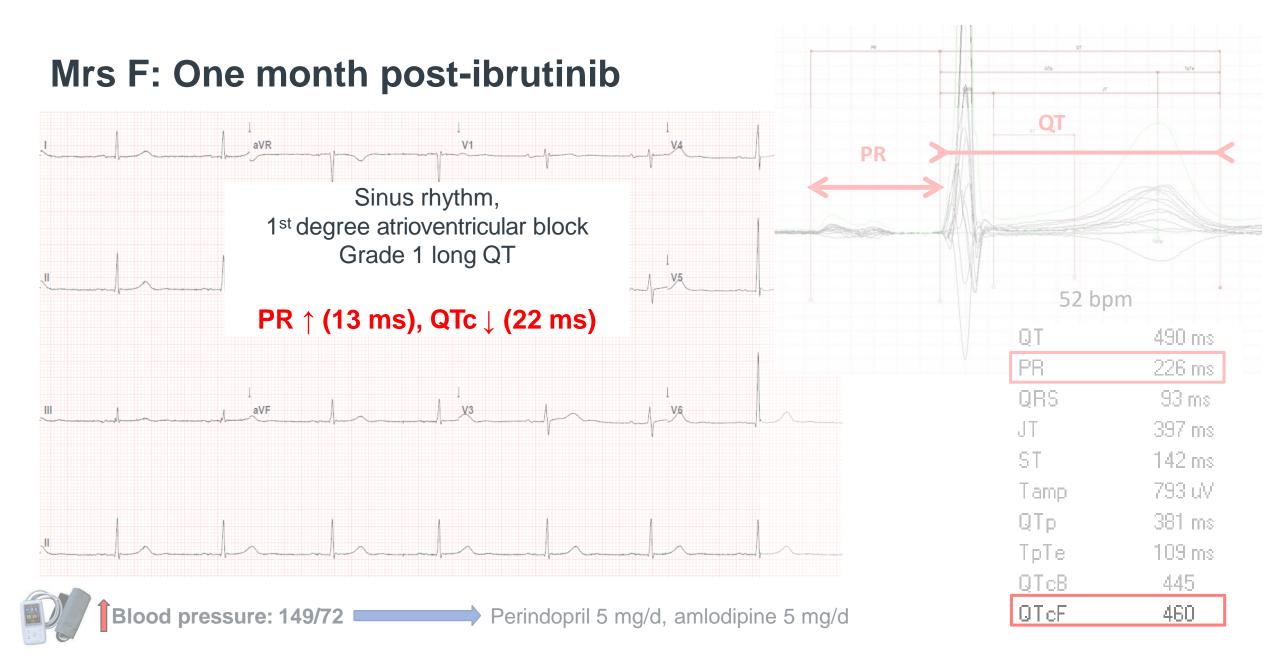


Mrs F: Pre-ibrutinib

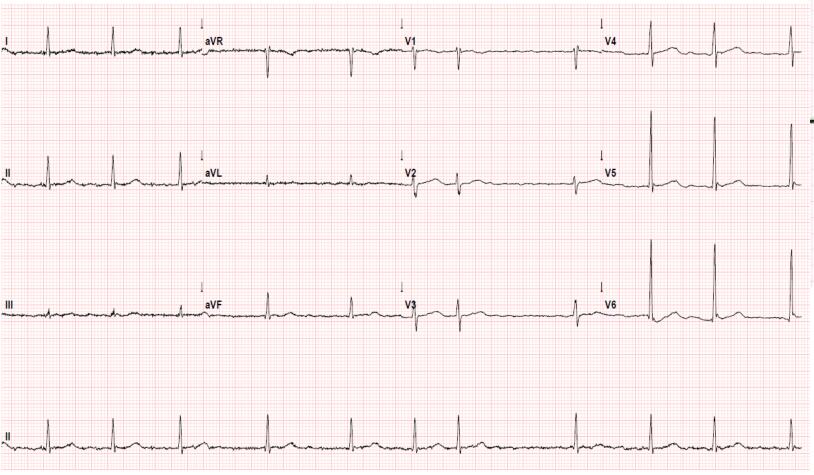
Sinus rhythm, 1st degree atrioventricular block Grade 2 long QT

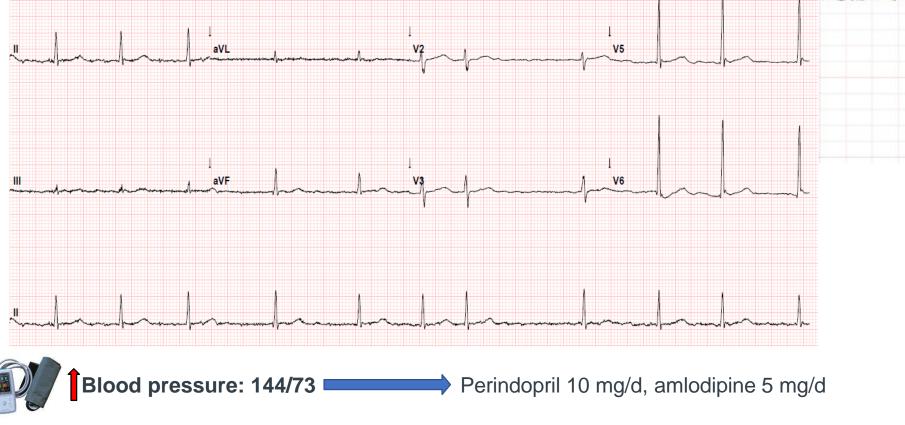



Blood pressure: 138/70 Monitoring

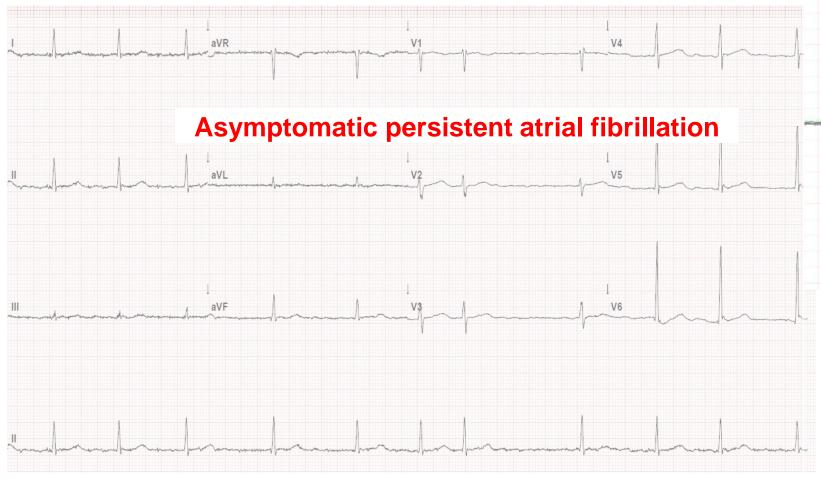


QT	517 ms
PR	213 ms
QRS	100 ms
JT	417 ms
ST	157 ms
Tamp	913 uV
QTp	407 ms
ТрТе	110 ms
QTcB	465
QTcF	482


Ibrutinib does not prolong the QT interval in healthy individuals



Mrs F: Three months post-ibrutinib



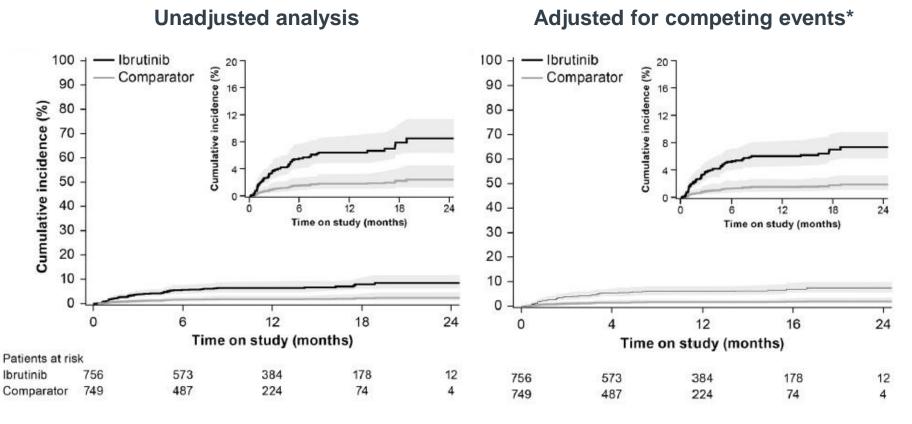
	ST
	65 bpm
QT	442 ms
PR	
QRS	88 ms
JT	354 ms
ST	222 ms
Tamp	373 uV
QTp	330 ms
TpTe	112 ms
QTcB	465
_QTcF	457

Mrs F: Three months post-ibrutinib

Blood pressure: 144/73 ■

Perindopril 10 mg/d, amlodipine 5 mg/d

Cardiac supraventricular arrhythmia


US FDA labels and randomized clinical trials meta-analyses:1

- 6.5% after 16.6 months
- 13.8% at 36 months (3.7% SAEs)

In real-life cohorts:2

38% at 2 years

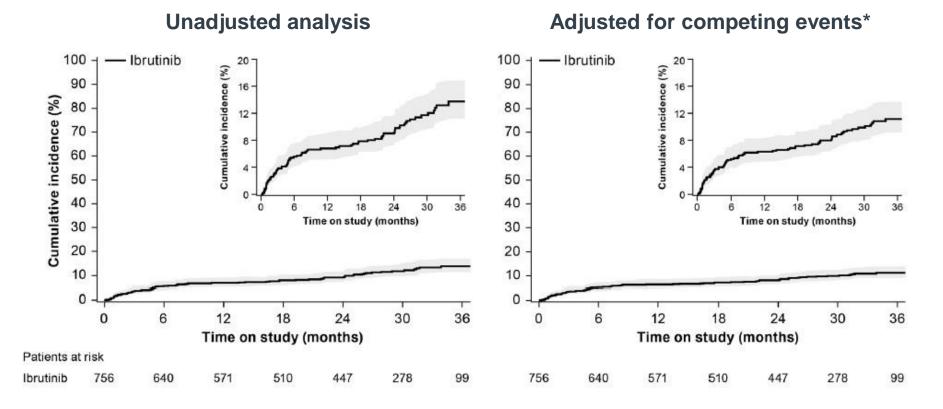
Cumulative incidence (95% CI) of atrial fibrillation with ibrutinib vs. comparator¹

^{*}Death and progressive disease.

CI, confidence interval; FDA, Food and Drug Administration; SAE, serious adverse event.

^{1.} Brown JR et al. Haematologica 2017; 102 (10): 1796–1805. 2. Baptiste F et al. Open Heart 2019; 6 (1): e001049.

Cardiac supraventricular arrhythmia


US FDA labels and randomized clinical trials meta-analyses:1

- 6.5% after 17 months
- 13.8% at 36 months
 (3.7% SAEs)

In real-life cohorts:2

• 38% at 2 years

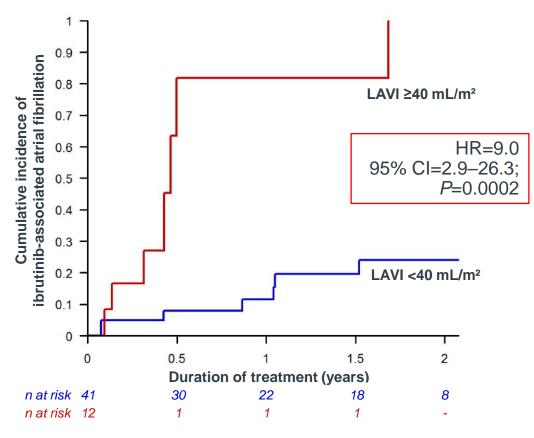
Cumulative incidence (95% CI) of atrial fibrillation with ibrutinib: Extended analysis¹

^{*}Death and progressive disease.

CI, confidence interval; FDA, Food and Drug Administration; SAE, serious adverse event.

^{1.} Brown JR et al. Haematologica 2017; 102 (10): 1796–1805. 2. Baptiste F et al. Open Heart 2019; 6 (1): e001049.

Left atrial abnormality


Cardiovascular characteristics associated with ibrutinib-associated atrial fibrillation¹

Variable	OR (95% CI)	<i>P</i> -value
Left atrial appendage*	6.6 (1.5–29.2)	0.01
Baseline hypertension	1.6 (0.3–8.2)	0.59
Baseline coronary artery disease	1.7 (0.2–14.2)	0.61
Age	1.0 (0.94–1.1)	0.63

ECG as a predictor of ibrutinib-associated atrial fibrillation¹

Characteristic	Value	95% CI
Sensitivity	79%	54–94
Specificity	71%	49–87
Positive likelihood ratio	2.7	1.4–5.3
Negative likelihood ratio	0.30	0.1–0.74
Positive predictive value	68%	45–86
Negative predictive value	81%	58–95

Left atrial volume index ≥40 mL/m² as a predictor of ibrutinib-associated atrial fibrillation²

Mrs F: PR: 213 ms; LAVI: 44 mL/m²

^{*}LAA defined as presence of one of the following: (1) Lead II-bifed P wave ("p mitrale") with 40 ms between peaks or >2.5 mm wide or >100ms in duration, (2) Lead V1-biphasic P wave with terminal portion >40 ms in duration or terminal portion >1 mm deep or (3) PR interval ≥200 ms (intra-atrial conduction delay).

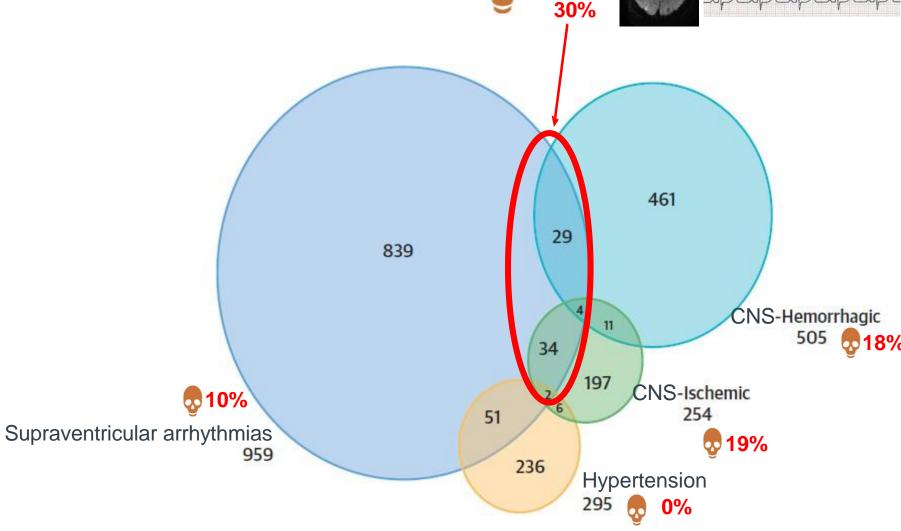
Overlap and fatalities: 10%–30% fatalities

Mrs F

CHADS-VASC: 5

• HAS-BLED: 3

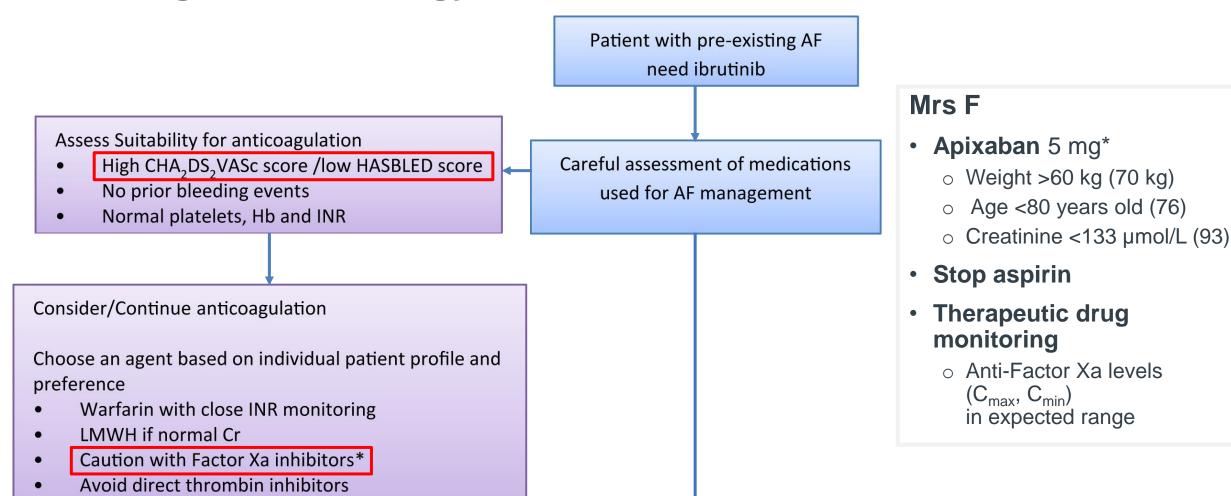
Hemoglobin: 13 g/dL


Platelets: 132 x10⁹ g/dL

Leukocytes: 5 G/L

• INR: 1

Creatinine clearance:
 60 mL/min/m²

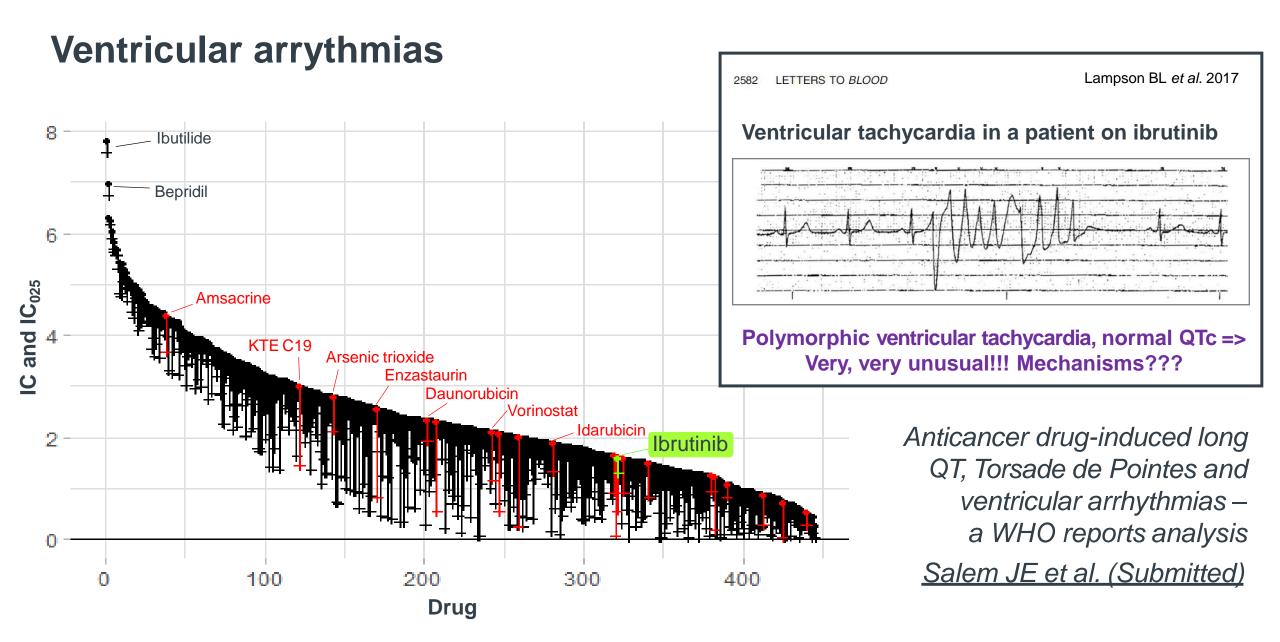

• On aspirin 75 mg/d

CHADS-VASC, congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, prior stroke or transient ischemic attack or thromboembolism, vascular disease, age 65–74 years, sex category; CNS, central nervous system; HAS-BLED, Hypertension, Abnormal renal and liver function, Stroke, Bleeding, Labile INR, Elderly, Drugs or alcohol; INR, international normalized ratio.

Salem JE et al. J Am Coll Cardiol 2019; 74 (13): 1667–1678.

Anticoagulation strategy

^{*}Factor Xa inhibitor interacts with ibrutinib and increases the bleeding risk (ibrutinib PGP inhibitor). Factor Xa or ibrutinib dose reduction may be considered based on individual case. AF; atrial fibrillation; CHA₂DS₂ VASc; congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, prior stroke or transient ischemic attack or thromboembolism, vascular disease, age 65 to 74 years, sex category; Cr, creatinine; HASBLED, hypertension, abnormal renal and liver function, stroke, bleeding, labile international normalized ratio, elderly, drugs or alcohol; INR, international normalized ratio; LMWH, low molecular weight heparin; PGP, P-glycoprotein. Ganatra S et al. JACC Clin Electrophysiol 2018; 4 (12): 1491–1500.

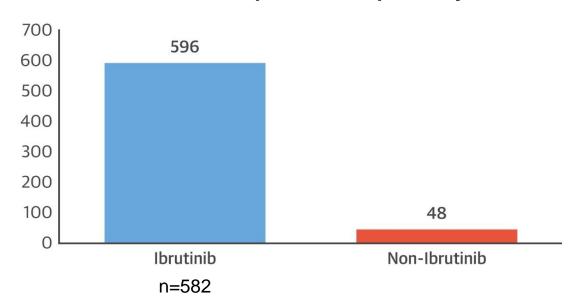

PK interaction (CYP, PGP) (CCB, digoxin, ibrutinib) Rate control (Beta blockers) Consider switching to BB if no contraindication Patient on CCB or Digoxin for Patient on Beta Blocker (BB) Avoid CCB (CYP450 3A4 inhibitor, for HR control HR control increases ibrutinib level) and Digoxin (P-gp substrate, ibrutinib BB is contraindicated increases digoxin level) · Continue CCB and start ibrutinib at reduced dose with close monitoring HR adequately HR not adequately controlled controlled AND/OR • Reduce Digoxin dose, administer 6 hours prior to or after ibrutinib dose with close monitoring of plasma digoxin Rate control level and development of toxicity Continue BB (Digoxin, CCB) Persistent rapid ventricular rate, severe symptoms, persistent reduced LVEF or refractory HF **Rhythm control Rhythm Control** (Cardioversion, anti-arrhythmic medications†)

Rate vs. rhythm control

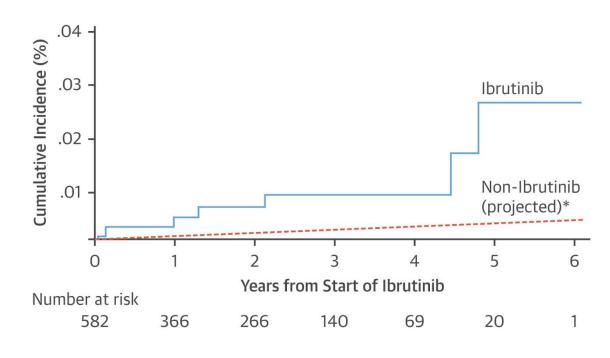
Mrs F

- Heart rate: 60–70 bpm spontaneously
- Rate control
- No antiarrhythmic

[†]Amiodarone interacts with ibrutinib and increases the risk of ibrutinib associated adverse events. Temporary withholding of ibrutinib or dose reduction might be considered. BB, beta blocker; CCB, calcium-channel blocker; HF, heart failure; HR, heart rate; LVEF, left ventricular ejection fraction; P-gp, P-glycoprotein. Ganatra S *et al. JACC Clin Electrophysiol* 2018; 4 (12): 1491–1500.



Lampson BL et al. Blood 2017; 129 (18): 2581–2584.


Ventricular arrythmia after ibrutinib initiation for lymphoid malignancies

VA incidence rate per 100,000 person-years

Cumulative incidence of VAs over time

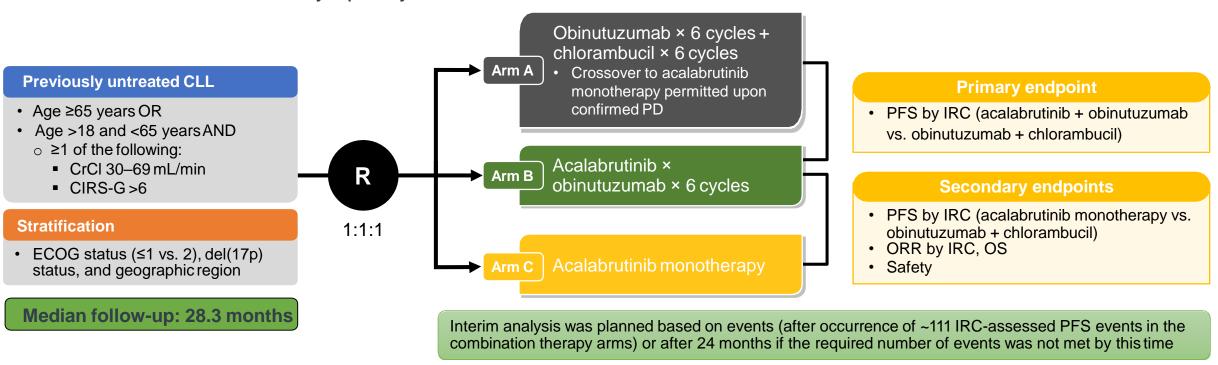
^{*}Assumes a linear event rate over time. FDA, Food and Drug Administration; VA, ventricular arrythmia. Guha A *et al. J Am Coll Cardiol* 2018; 72 (6): 697–698.

Acalabrutinib in relapsed chronic lymphocytic leukemia

Recombinant kinase inhibition assays: Acalabrutinib vs. ibrutinib (1)*

		IC ₅₀ (nM)		
	Kinase	Acalabrutinib	Ibrutinib	
	втк	5.1 ± 1.0 (N=4)	1.5 ± 0.2 (N=4)	
154	BMX [†]	46 ± 12 (N=3)	0.8 ± 0.1 (N=3)	
	ITK†	>1,000 (N=4)	4.9 ± 1.2 (N=4)	
	TEC†	93 ± 35 (N=2)	7.0 ± 2.5 (N=2)	
	TXK [†]	368 ± 141 (N=3)	2.0 ± 0.3 (N=3)	
	EGFR [†]	>1,000 (N=3)	5.3 ± 1.3 (N=3)	
	ERBB2 [†]	~1,000 (N=3)	6.4 ± 1.8 (N=3)	
	ERBB4 [†]	16 ± 5 (N=3)	3.4 ± 1.3 (N=3)	

Recombinant kinase inhibition assays: Acalabrutinib vs. ibrutinib (2)*


	IC ₅₀ (nM)		
Kinase	Acalabrutinib	Ibrutinib	
JAK3 [†]	>1,000 (N=3)	32 ± 15 (N=3)	
BLK [†]	>1,000 (N=3)	0.1 ± 0.0 (N=3)	
FGR	>1,000 (N=2)	3.3 ± 1.1 (N=2)	
FYN	>1,000 (N=2)	29 ± 0 (N=2)	
нск	>1,000 (N=2)	29 ± 0 (N=2)	
LCK	>1,000 (N=2)	6.3 ± 1.3 (N=2)	
LYN	>1,000 (N=2)	20 ± 1 (N=2)	
SRC	>1,000 (N=2)	19 ± 1 (N=2)	
YES1	>1,000 (N=2)	4.1 ± 0.2 (N=2)	

Byrd JC et al. N Engl J Med 2016; 374 (4): 323–332.

^{*}Acalabrutinib and ibrutinib comparison of *in vitro* activity inhibitory profiles for recombinant enzymes of Tec, ErbB, Src family kinases, and other related kinases. For experiments with N=3 or N=4, plus/minus standard deviation is shown. For experiments with N=2, plus/minus the error/range over the two independent experiments is shown. IC₅₀ denotes half maximal inhibitory concentration. †Kinases with a cysteine aligning with cysteine 481 in BTK.

ELEVATE-TN (ACE-CL-007): Study design

 Phase III study: Acalabrutinib with obinutuzumab or alone vs. obinutuzumab plus chlorambucil in treatment-naive chronic lymphocytic leukemia

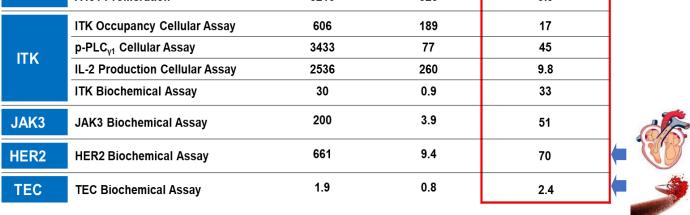
Dosing: Arm A – Obinutuzumab and chlorambucil were administered for a maximum of six 28-day treatment cycles. Obinutuzumab 1,000 mg IV was administered on Days 1 and 2 (100 mg on Day 1 and 900 mg on Day 1 and 900 mg on Day 1 and 900 mg on Day 2), 8, and 15 of Cycle 1 followed by 1,000 mg on Day 1 of Cycles 2 up to 6. Chlorambucil 0.5 mg/kg was administered on Days 1 and 15 of Cycles 1 up to 6; Arm B – Acalabrutinib dosed at 100 mg BID until disease progression or unacceptable toxicity. Obinutuzumab was administered IV starting on Cycle 2 Day 1 for a maximum of six 28-day treatment cycles. Obinutuzumab 1,000 mg was administered on Days 1 and 2 (100 mg on Day 1 and 900 mg on Day 2), 8, and 15 of Cycle 2 followed by 1,000 mg on Day 1 of Cycles 3 up to 7; Arm C – Acalabrutinib dosed at 100 mg BID until disease progression or unacceptable toxicity.

BID, twice a day; CIRS-G, Cumulative Illness Rating Scale for Geriatric; CLL, chronic lymphocytic leukemia; CrCl, creatinine clearance; ECOG, Eastern Cooperative Oncology Group; IRC, independent review committee; ORR, overall response rate; OS, overall survival; PD, progression-free survival; R, randomization.

ELEVATE-TN: Events of clinical interest for acalabrutinib

AEs, n (%)	Acalabrutinib + Obinutuzumab (n=178)		Acalabrutinib (n=179)		Obinutuzumab + chlorambucil (n=169)	
	Any	Grade ≥3	Any	Grade ≥3	Any	Grade ≥3
Atrial fibrillation	6 (3.4)	1 (0.6)	7 (3.9)	0	1 (0.6)	0
Hypertension	13 (7.3)	5 (2.8)	8 (4.5)	4 (2.2)	6 (3.6)	5 (3.0)
Bleeding Major bleeding*	76 (42.7) 5 (2.8) [†]	3 (1.7) 3 (1.7)	70 (39.1) 3 (1.7)‡	3 (1.7) 3 (1.7)	20 (11.8) 2 (1.2)§	0 0
Infections	123 (69.1)	37 (20.8)	117 (65.4)	25 (14.0)	74 (43.8)	14 (8.3)
Second primary malignancies, excluding non-melanoma skin cancer	10 (5.6)	6 (3.4)	5 (2.8)#	2 (1.1)	3 (1.8)¶	2 (1.2)

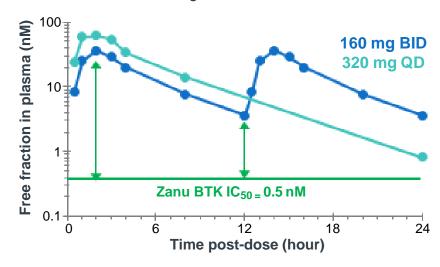
There were no reported events of ventricular tachyarrhythmias.

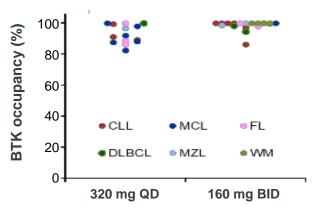

^{*}Defined as any serious or Grade ≥3 hemorrhagic event, or any grade hemorrhagic event in the central nervous system. †Includes gastric ulcer hemorrhage, gastrointestinal hemorrhage, hematemesis, postprocedural hemorrhage, and subdural hemorrhage. ‡Includes hemarthrosis, postprocedural hematoma, and retinal hemorrhage and hemorrhage and hemoptysis. *Includes non-small cell lung cancer (n=2), squamous cell carcinoma (n=2), basosquamous carcinoma, bladder transitional cell carcinoma, breast cancer, gastric cancer Stage IV, metastases to bone, prostate cancer, and renal cell carcinoma (all n=1). *Includes prostate cancer, acute myelomonocytic leukemia, and lung adenocarcinoma (all n=1). AE, adverse event.

Zanubrutinib: A potent and selective BTK inhibitor^{1,2}

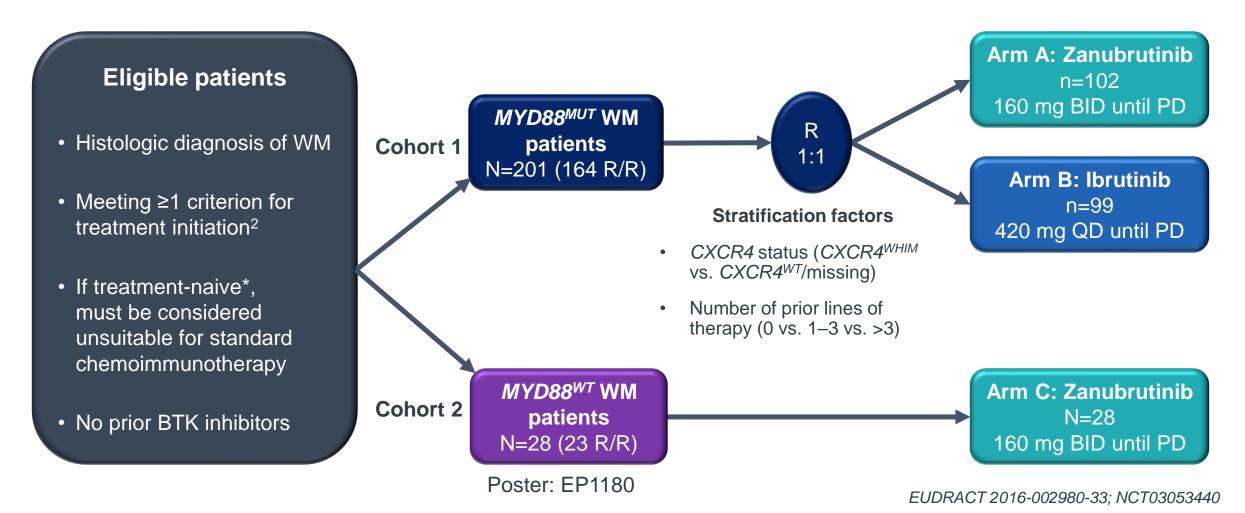
Kinase inhibition

Targets	Assays	Zanubrutinib IC ₅₀ (nM)	lbrutinib IC ₅₀ (nM)	Ratio (Zanubrutinib:Ibrutinib)	
	BTK-pY223 Cellular Assay	1.8	3.5	0.5	
DTI	Rec-1 Proliferation	0.36	0.34	1.1	
втк	BTK Occupation Cellular Assay	2.2	2.3	1.0	-
	BTK Biochemical Assay	0.22	0.2	1.1	


P-EGFR HTRF Cellular Assay A431 Proliferation	p-EGFR HTRF Cellular Assay	606	101	6	
	A431 Proliferation	3210	323	9.9	
	ITK Occupancy Cellular Assay	606	189	17	
ITK	p-PLC _{v1} Cellular Assay	3433	77	45	
IIK	IL-2 Production Cellular Assay	2536	260	9.8	
	ITK Biochemical Assay	30	0.9	33	
JAK3	JAK3 Biochemical Assay	200	3.9	51	
HER2	HER2 Biochemical Assay	661	9.4	70	(=
TEC	TEC Biochemical Assay	1.9	0.8	2.4	(=


BID, twice a day; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; IC₅₀, half maximal inhibitory concentration; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; QD, every day; WM, Waldenström macroglobulinemia; Zanu, zanubrutinib.

1. Guo Y et al. J Med Chem 2019; 62 (17): 7923-7940. 2. Tam CS et al. Blood 2019; 134 (11): 851-859.


C_{max} and C_{trough} >BTK IC₅₀ over 24 hours

Complete, sustained BTK occupancy

ASPEN study design: Zanubrutinib vs. ibrutinib in MYD88^{MUT} WM¹

^{*}Up to 20% of the overall population.

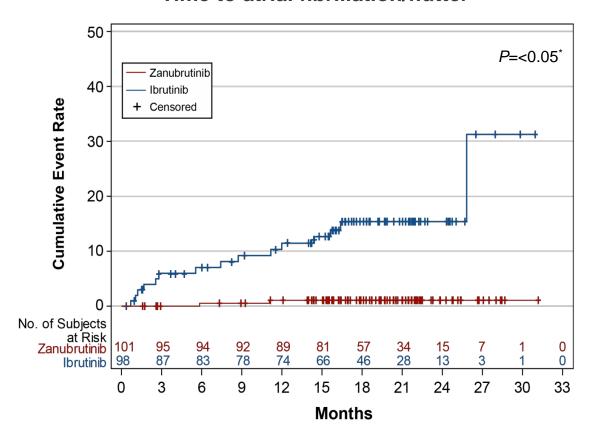
BID, twice a day; BTK, Bruton's tyrosine kinase; MUT, mutated; PD, progressive disease; QD, every day; R, randomization; R/R, relapsed/refractory; WHIM, warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis; WM, Waldenström's macroglobulinemia; WT, wild-type.

^{1.} Tam CS et al. Abstract 8007 presented at the 2020 American Society of Clinical Oncology (ASCO) Annual Meeting (virtual); May 29–31, 2020. 2. Dimopoulos MA et al. Blood 2014; 124 (9): 1404–1411.

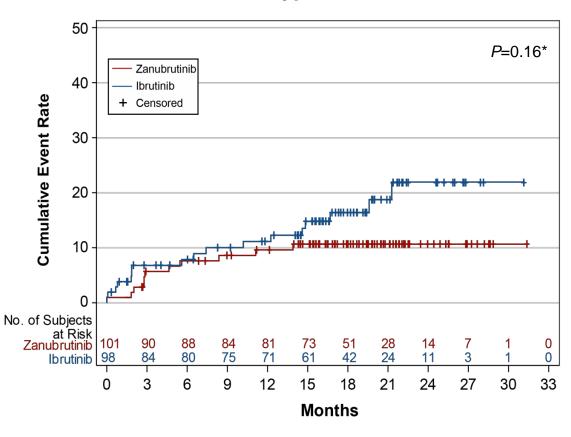
ASPEN study: Adverse event categories of interest 5-month follow-up

	All grades		Gra	le ≥3	
AE categories, n (%) (pooled terms)	Ibrutinib (n=98)	Zanubrutinib (n=101)	Ibrutinib (n=98)	Zanubrutinib (n=101)	
Atrial fibrillation/flutter*	18 (18.4%)	3 (3.0%)	7 (7.1%)	0	
Diarrhea (PT)	32 (32.7%)	22 (21.8%)	2 (2.0%)	3 (3.0%)	
Hemorrhage	59 (60.2%)	51 (50.5%)	9 (9.2%)	6 (5.9%)	
Major hemorrhage [†]	10 (10.2%)	6 (5.9%)	9 (9.2%)	6 (5.9%)	
Hypertension	20 (20.4%)	13 (12.9%)	15 (15.3%)	8 (7.9%)	
Neutropenia*,‡	15 (15.3%)	32 (31.7%)	8 (8.2%)	23 (22.8%)	
Infection	70 (71.4%)	70 (69.3%)	23 (23.5%)	19 (18.8%)	
Second malignancy	12 (12.2%)	13 (12.9%)	1 (1.0%)	3 (3.0%)	

Data cut-off: January 31, 2020.


Higher AE rate in bold with ≥10% difference in any grade AEs or ≥5% difference in Grade ≥3 AEs.

^{*}Descriptive two-sided *P*-value <0.05. †Defined as any Grade ≥3 hemorrhage or any grade central nervous system hemorrhage. ‡Including PTs of neutropenia, neutropenia, neutropenia agranulocytosis, neutropenic infection, and neutropenic sepsis.


AE, adverse event; PT, preferred term.

Time to adverse event: Risk analysis over duration of treatment

Time to atrial fibrillation/flutter

Time to hypertension

^{*}Descriptive purpose only.

Conclusions

- Cardiac supraventricular arrhythmias are the most frequent cardiovascular complications observed with BTK inhibitors
- In a prospective multicenter cohort study with systematic cardio-oncology follow-up the risk of ibrutinib-related atrial fibrillation was 38% at 2 years (15-fold the risk in the general population)¹
 - Most cases occurred in asymptomatic patients within the first 6 months of ibrutinib initiation, justifying standardized and close monitoring during this period
- Management is based on reducing the risk of:
 - Thromboembolic and heart failure risks
 - BTK inhibitor arrest
- The risk of atrial fibrillation depends on the off-target kinome of the drugs and is lower in new-generation BTK inhibitors
- Close cooperation between cardiologists and hematologists is needed to better manage patients with WM and other hematologic cancers treated with BTK inhibitors

1. Baptiste F et al. Open Heart 2019; 6 (1): e001049.

Upgrade Your Powerpoint Presentatoins!

Log in to MeetingPulse

Don't have a MeetingPulse account?

Get a free account here

Engagement Tools

Use tools, like live polling and surveys, to make your presentations more interactive and engaging.

Live Feedback

Let your audience and attendees tell you exactly what they think and like.

Summary

Optimal WM management requires co-ordination with an extended team comprising a diverse range of specialists

The varied neuropathic complications associated with WM demand careful history-taking and examination in diagnosis

Ibrutinib is associated with a significant risk of cardiovascular adverse events, particularly atrial fibrillation; new-generation BTK inhibitors may have greater specificity and reduced cardiovascular risks

WM, Waldenström's macroglobulinemia.

Save the date!

Management of hematologic malignancies during the COVID-19 pandemic

Join us in **July 2021** for a timely discussion on prioritizing and adapting treatment strategies

We would appreciate your feedback! Please complete the post-meeting survey.

Thank you for your attention

